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Abstract: The analysis of the set of extreme random variables models is still an extremely topical topic in 

many areas of mathematical research in the theory and practice of managing production processes due 

to its specificity and great interest in finding an expectation and stability indicators set studied in practical 

economics. Calculations of applied mathematics help to determine tentatively possible boundary 

parameters of various models, i.e., expectations, despite the fact that theoretical calculations do not have 

a direct association with practical data. Nevertheless, the consideration of extreme models of extreme 

random variables is still relevant in many areas of science and industry. The study subject was the 

hypernormal distribution theory. The study object was a set of extreme random variables models. The 

study purpose was a comprehensive analysis of many models of extreme random variables. To achieve 

the purpose and solve the tasks formulated on its basis, empirical, analytical and comparative methods of 

data analysis and the method of mathematical modelling, which contributed to the study of the materials 

presented in this article, were used. In the study course, materials from the works of such leading world 

experts in extreme value theory and programming K. Beck, M. Fowler, L. Tippett, E. Gumbel, K. Auer, 

R. Miller, and Scott W. Ambler and researchers as V.L. Khatskevich, B.V. Gnedenko, V.A. Akimov, V.A. 

Bykov, E.Yu. Shchetinin, K.M. Nazarenko, L.P. Kvashko, A.S. Losev, V.S. Mikhailov, V.A. Popov, E.R. 

Smolyakov. In the study course, the definition of an extreme value within the framework of the theory 

was refined, the typology of the distribution of maximum values was analysed, seven theories of the 

hypernormal distribution were identified and their proofs were presented, and practical examples of the 

application of each theory were given. The practical significance of the study of extreme random variables 

models in various areas of industrial human activity was confirmed. The materials of the study can be 

used in the widest range: from application in risk management of industrial production to predicting the 

probabilities of natural phenomena, which makes it possible to prevent significant economic and social 

losses of society, as well as make a tangible contribution to programming the probabilities of the 

development of the society of the future. 
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Теория гипернормального распределения: анализ множества моделей 

экстремальных случайных величин 

 

Аннотация: Aнализ множества моделей экстремальных случайных величин до сих пор является 

крайне актуальной темой во многих областях математических исследований теории и практики 

управления производственными процессами в силу своей специфичности и большого интереса 

к поиску множества показателей ожидаемости и стабильности, исследуемые в практической 

экономике. Расчёты прикладной математики помогают определять ориентировочно возможные 

пограничные параметры всевозможных моделей, т.е., ожиданий, несмотря на то что 

теоретические расчёты не имеют прямой ассоциации с практическими данными. Тем не менее, 

рассмотрение экстремальных моделей экстремальных случайных величин до сих пор является 

актуальным во многих областях науки и промышленности. Предметом исследования являлась 

теорема гипернормального распределения. Объектом исследования являлось множество моделей 

экстремальных случайных величин. Целью данного исследования являлся комплексный анализ 

множества моделей экстремальных случайных величин. Для достижения поставленной цели и 

решения сформулированных на её основании задач использовались эмпирический, 

аналитический и сравнительный методы анализа данных и метод математического 

моделирования, которые способствовали исследованию материалов, представленных в данной 

статье. В ходе исследования были использованы материалы трудов таких отечественных 

исследователей как В.Л. Хацкевич, Б.В. Гнеденко, В.А. Акимов, В.А. Быков, Е.Ю. Щетинин, К.М. 

Назаренко, Л.П. Квашко, А.С. Лосев, В.С. Михайлов, В.А. Попов, Э.Р. Смолъяков, а также 

материалы ведущих зарубежных специалистов в области теории экстремальных значений и 

программирования К. Бека, М. Фаулера, Л. Типпетта, Э. Гумбеля, К. Ауэра, Р. Миллер, и Скотта 

В. Эмблера. В ходе исследования было уточнено определение экстремальной величины в рамках 

теории, проанализирована типологию распределения максимальных величин, определены семь 

теорем гипернормального распределения и представлены их доказательства, а также даны 

практические примеры применения каждой из теорем. Тем самым, была подтверждена 

практическая значимость исследования вариативов экстремальных моделей экстремальных 

случайных величин в различных областях индустриальной деятельности человека. Материалы 

данного исследования могут быть использованы в самом широком спектре: от применения в 

области риск-менеджмента промышленного производства до предсказания вероятностей 

природных явлений, что позволяет предупредить значительные экономические и социальные 

потери общества, а также внести ощутимый вклад в программирование вероятностей развития 

общества будущего. 

 

Ключевые слова: экстремальные случайные величины, гипернормальное распределение, теория 

экстремальных значений, энтропия. 

 

Introduction 

The analysis of the set of extreme random variables models is still an extremely topical topic 

in many areas of mathematical research in the theory and practice of managing production 

processes due to its specificity and great interest in finding an expectation and stability indicators 

set studied in practical economics. Calculations of applied mathematics help to determine 

tentatively possible boundary parameters of various models, i.e., expectations, despite the fact 

that theoretical calculations do not have a direct association with practical data. Nevertheless, 
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the consideration of extreme models of extreme random variables is still relevant in many areas 

of science and industry. 

The study subject was the hypernormal distribution theory. 

The study object was a set of extreme random variables models. 

The study purpose was a comprehensive analysis of many models of extreme random 

variables. 

Based on the study purpose, the following tasks were formed: 

− clarify the definition of an extreme value within the framework of the theory; 

− analyse the typology of the distribution of maximum values; 

− define hypernormal distribution theories and present their proofs; 

− give a conclusion on the practical application of the evidence base of the hypernormal 

distribution theories. 

To achieve the purpose and solve the tasks formulated on its basis, empirical, analytical and 

comparative methods of data analysis and the method of mathematical modelling, which 

contributed to the study of the materials presented in this article, were used. 

In the study course, materials from the works of such leading world experts in extreme 

value theory and programming K. Beck, M. Fowler (Beck & Fowler, 2001), L. Tippett (Tippett, 

2013), E. Gumbel (Gumbel, 2012), K. Auer, R. Miller (Auer & Miller, 2001), and Scott W. Ambler 

and researchers as V.L. Khatskevich (Khatskevich, 2013; Khatskevich, 2020a; Khatskevich, 2020b), 

B.V. Gnedenko (Gnedenko, 1943), V.A. Akimov, V.A. Bykov (Akimov et al., 2009), E. Yu. 

Shchetinin (Akimov et al., 2009; Shchetinin & Nazarenko, 2008), K.M. Nazarenko (Shchetinin & 

Nazarenko, 2008), L.P. Kvashko, A.S. Losev (Kvashko & Losev, 2013), V.S. Mikhailov (Mikhailov, 

2012), V.A. Popov (Popov, 2013), E.R. Smolyakov (Smolyakov, 2011). 

 

Materials and methods of research 

 

Auxiliary information and basic definitions 

The theory of extreme values is a branch of the science of statistics, which aims to study 

extreme deviations from the median of probability distributions, i.e., an assessment of 

phenomena based on an ordered selection of probability parameters for the most extreme events 

or processes. The concept of extreme value theory was introduced by Leonard Tippett (Tippett, 

2013) in the first quarter of the 20th century and became the basis of many studies that have been 

going on for about 100 years. At that time, his research was based at the British Cotton Research 

Association, where he worked on strengthening the cotton thread. In his research, L. Tippett 

postulated that the strength of a thread is determined by the strength of its weakest fibers. He 

obtained three asymptotic limits that clearly described the distributions of extrema that 

considered independent variables (Tippett, 2012). It was the study that became the starting point 

in applying a qualitatively new approach to calculating extremeness in production and economic 

indicators. In the future, E.D. Gumbel codified this theory in his work Statistics of Extremes 

(Gumbel, 2012). There he gave the distribution concept, which now bears his name. In the second 

half of the 20th century, the results obtained were significantly expanded and began to consider 

insignificant correlations between variables. Strong correlations of the order of dispersion began 



4 

to be actively studied already at the beginning of the 21st century with the use of artificial 

intelligence and a neural network. 

With the potentially high probability of extreme manifestations, there naturally becomes an 

increased risk of redundant programming as a form of agile software development 

methodologies. The authors of this methodology are such prominent scientists today as Kent 

Beck, Ward Cunningham, Martin Fowler (Beck & Fowler, 2001) and others. Kent Beck pioneered 

the development of the methodology for the Chrysler Comprehensive Compensation System 

project (Beck, 2003). The goal was to apply theoretical methods and develop new and modern 

software for those times. As a result of the development, it was possible to raise and develop 

technology and programming at a new qualitative level. It should also note that it was in extreme 

programming that a departure from the long-term process of creating programmes was 

determined, which consisted in the fact that instead of one-time planning, analysis and design of 

a system for the calculated course of events, specialists now implement these operations in a 

phased complex during development. 

The analysis of extreme values plays an important role in the study of many phenomena and 

in solving applied problems of the complex systems reliability and efficiency, structural 

mechanics, the theory of stability, dynamic strength, etc. Consideration of absolute extrema will 

begin with consideration of the maximum: 

𝑈 = max(𝑋1, 𝑋2, … , 𝑋𝑛).  

Values from a set of n random variables (random sequence). If all components of the sample 

𝑋1, … 𝑋𝑛 are independent and equally distributed random variables, then the distribution 

function of the largest 𝐹𝑛(𝑋) value is determined as follows: 

𝐹𝑛(𝑋) = 𝑃{𝑈 < 𝑥} = 𝑃{𝑋1 < 𝑋, 𝑋2 < 𝑋, … , 𝑋𝑛 < 𝑋} = 𝐹𝑛(𝑋)  

where 𝐹(𝑋) is distribution function of the original random variable. 

If 𝑉 is the minimum value of a random variable from a set of n random variables: 

𝑉 = max(𝑋1, 𝑋2, … , 𝑋𝑛).  

And if the components of the sample 𝑋1, … , 𝑋𝑛  are independent and equally distributed 

random variables, then the distribution function of the smallest 𝑄𝑛(𝑋) value is determined 

similarly: 

𝑄𝑛(𝑋) = 𝑃{𝑉 < 𝑥} = 1 − 𝑃{𝑋1 ≥ 𝑋, 𝑋2 ≥ 𝑋, … , 𝑋𝑛 ≥ 𝑋} = 1 − [1 − 𝐹𝑛(𝑋)]𝑛 .  

Thus, extreme values distributions can be derived from the exact original distribution. In 

reality, the analytic properties of the original distribution are rarely known. This leads to the need 

to use the principle of maximum distribution and determine on this basis the extreme 

distribution of the extreme value (maximum or minimum). From a mathematical viewpoint, the 

maximum principle’s application uncertainty leads to the solution of extremal (variational) 

problems with organic ones, determined by the form of setting the probabilistic characteristics 

and the range of random variable values. 

According to the distribution, which has the greatest entropy under certain restrictions, is 

called extreme. Next, a brief description of 8 types of extreme distributions of extreme random 

variables with a certain degree of universality will be given. The common thing in the formation 

of such models is the definition of the Euler-Lagrange equations of variational problems, 

considering the specifics of specifying information about the initial random variable and allowing 
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meaningful interpretation. The most obvious and, most importantly, the most practical 

application-oriented is the statistical interpretation of extremal distributions in terms of the 

theory of order statistics, the subject of which is the study of the properties and applications of 

ordered random variables and functions of them. To this end, we present some auxiliary 

information from the theory of order statistics. The source material for statistical analysis, 

obtained as a result of a simple random selection from the general population, determined by 

the random variable 𝑋, is a sample of a finite size 𝑛: 

𝑋1, 𝑋2, … , 𝑋𝑛 .  

A sequence of sample values ordered by magnitude 𝑋1
(𝑛)

≤ 𝑋2
(𝑛)

≤ 𝑋𝑛
(𝑛)

 is called a variation 

series. 

If the initial distribution of the general population is characterised by the mathematical 

expectation 𝑚 and the variance 𝛿2, the distribution of the rightmost member of the variation 

series is 

𝑃{𝑋𝑛
(𝑛)

< 𝑥} = 𝐹(𝑋).  

It should let agree to call the distribution that delivers the entropy maximum an extremal 

distribution of type 1. An extremal distribution of type 2 is a limiting 𝑛 → ∞ distribution of type 

1. If the initial distribution of the general population is characterised by only one mathematical 

expectation 𝑚, the distribution of the rightmost member of the variation series is 

𝑃{𝑋𝑛
(𝑛)

< 𝑥} = 𝐺𝑛(𝑋).  

It should let agree to call the distribution that delivers the entropy maximum an extremal 

distribution of type 3. For the case 𝑛 → ∞ the distribution function 𝐺𝑛(𝑋) degenerates into a 

type 4 distribution function 𝐺∞(𝑋). 

In a similar way, we introduce into consideration the extremal distributions of the minimum 

values. If the initial distribution of the general population is characterized by the mathematical 

expectation 𝑚 and the variance 𝛿2, the distribution of the rightmost member of the variation 

series (the minimum of the random sequence): 

𝑃{𝑋𝑛
(𝑛)

< 𝑥} = 𝑄𝑛(𝑋). 

It should let agree to call the distribution that delivers the entropy maximum an extremal 

distribution of type 5. 

As 𝑛 → ∞ it should say that an extremal distribution of type 5 degenerates into an extremal 

distribution of type 6. If it assumes that the original random variable is characterised only by the 

mathematical expectation 𝑚, the distribution of the leftmost member of the variational series 

𝑃{𝑋𝑛
(𝑛)

< 𝑥} = 𝑅𝑛(𝑋), which provides the maximum entropy, it should agree to call the 

extremal distribution of type 6. For the limiting case 𝑛 → ∞ it is useful to introduce a type 8 

distribution. Thus, extreme distributions of types 1-4 are distributions of maximum values, and 

distributions of types 5-8 are distributions of minimum values of random sequences, extreme 

distributions of types 1, 2, 5, and 6 are distributions of extremes of random sequences of 

independent and identically distributed random variables of the general population, the 

distribution function of which is unknown and is characterised only by mathematical expectation 

and variance, extreme distributions of 3, 4, 6, and 8 types are distributions of extrema of random 
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sequences of independent and identically distributed random variables of the general population, 

characterised by only one mean, extreme distributions of 3, 4, 7, and 8 types are asymptotic 

(limiting) distributions. In a compact form, the main notation and definitions are presented in 

the appendix (Table 1). 

 

The principle of maximum values distribution 

An extreme distribution of type 1 (hypernormal distribution) is a continuous distribution, 

the probability density of which is the solution of the differential equation: 

𝑛𝜎2[𝐹𝑛(𝑋)]
𝑛−1

𝑛 �̈�𝑛(𝑋) + (𝑋 − 𝑚)�̇�𝑛(𝑋) = 0] (1) 

where 𝑚 and 𝜎2 are the mathematical expectation and variance of the set of initial random 

variables. The nonlinear differential equation (1) satisfies the natural boundary conditions 

𝐹𝑛(−∞) = 0, 𝐹𝑛(∞) = 1 (2) and is completely determined by the first two moments (𝑚 and 

𝜎2) of the original random population and the sample size 𝑛. 

The hypernormal distribution corresponds to the distribution function 𝐹(𝑋) of the original 

random variable, determined by solving the following differential equation with the same 

boundary conditions 

𝑛𝜎2�̈�𝑛(𝑋)[𝐹(𝑋)]𝑛−1𝜎2𝑛(𝑛 − 1)�̇�2(𝑋)[𝐹(𝑋)]𝑛−2 + (𝑥 − 𝑚)�̇�𝑛(𝑋) = 0 (3) 

𝐹(−∞) = 0, 𝐹(∞) = 1 (4) 

In the appendix, the figures 1-10 (Figure 1; Figure 2; Figure 3; Figure 4; Figure 5; Figure 6; Figure 

7; Figure 8; Figure 9; Figure 10) show graphs of functions and numerical characteristics (expectation 

and variance) of the hypernormal distribution for integer parameters 𝑛 from 1 to 10, obtained 

as a result of solving the nonlinear boundary value problem (1), (2). The calculation of the 

functions 𝐹𝑛(𝑋) is made for standard conditions (for the scale parameter 𝜎 = 1 the shift 

parameter 𝑚 = 0). 

For large values of the argument (𝑥 > 𝑚 + 3𝜎) the hypernormal distribution 

asymptotically approaches the normal distribution with density 

𝑓(𝑥) =
1

√2𝜋𝜎√𝑛
𝑒 (5) 

With an extremal distribution of type 2 (hypernormal distribution), the random variable 

𝑋𝑛
(𝑛)

  has a limiting (for 𝑛 > 10) hypernormal distribution if its quantile function has the form 

𝑥𝑝 = 𝑚 + 𝜎√2𝑛√−𝐸𝑖(ln 𝑃) (6) 

where 𝐸𝑖(ln 𝑃) is integral exponential function, whose argument is the natural logarithm of the 

probability 𝑝 = 𝐹∞(𝑥). 

The second table 2 (Table 2) presents the values of the function of the limiting hypernormal 

distribution 𝐹∞(𝑥), whose argument is the value: 

�̃� =
𝑥−𝑚

𝜎√𝑛
.  

The mathematical expectation and variance of a random variable is determined by the 

formulas: 

𝐸[𝑋𝑛
(𝑛)] = 𝑚 + 𝜎√2𝑛 ∫ √−𝐸1(ln 𝑃)𝑑𝑝

1

0
= 𝑚 + 0.69676√2𝑛,  

𝐷 = 2𝑛𝜎2 {∫ [−𝐸𝑖(ln 𝑃)𝑑𝑝 − [∫ 𝐸𝑖(ln 𝑃)
1

0
] 𝑑𝑝]

21

0
} = 2𝑛𝜎2(2 − 0.60672) = 3.0292𝑛𝜎2.  
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An extremal distribution of type 3 is a continuous distribution whose probability density is 

a solution to the differential equation: 

𝑚𝑛[𝐺𝑛(𝑥)]�̈�𝑛(𝑥) + 𝐺𝑛(𝑥) = 0 (7) 

where 𝑚 is mathematical expectation of the set of initial random variables. 

Differential equation (7) satisfies the boundary conditions 

𝐺𝑛(0) = 0, 𝐺𝑛(∞) = 1 (8) 

The density is determined by the parameters 𝑚 and 𝑛 (sample size). 

An extremal distribution of type 3 corresponds to a quantile function that displays 

𝑝 = 𝜎𝑛(𝑥)𝑏𝑥 

𝑥𝑝 = 𝑚𝑝2𝐹1(𝑙, 𝑛; 𝑛 + 1; √𝑝𝑛 ) (9) 

where 𝐹1(𝜆;  𝛽;  𝛾; 𝑧) are Gaussian hypergeometric function. 

Using the representation of the Gaussian hypergeometric function as a series, it is 

convenient to represent the calculation formula for function (9) in the form: 

𝑥 = 𝑚𝑝 ∑
𝑛

𝑛+𝑟
𝑝

𝑟

𝑛 ∞
𝑟=0  (10) 

The mathematical expectation of a random variable 𝑋𝑛
(𝑛)

 is determined by the dependence: 

𝐸[𝑋𝑛
(𝑛)] = 𝑚𝑛 ∑

1

(𝑛+𝑟)(2𝑛+𝑟)
∞
𝑟=0   (11) 

The value of the sum 𝑆𝑛 series (Table 3): 

𝑆𝑛 = 𝑛2 ∑
1

(𝑛+𝑟)(2𝑛+𝑟)

∞
𝑟=0  .  

An extreme distribution of type 4 is a continuous limiting (𝑛 → ∞) extreme distribution of 

type 3. The probability density of this distribution 𝐺∞(𝑥) is the solution of the differential 

equation: 

𝑚𝑛𝐺∞(𝑥)�̈�∞(𝑥) + �̇�∞(𝑥) = 0 (12) 

with boundary conditions 𝐺∞(0) = 0; 𝐺∞(∞) = 1. 

An extreme distribution of type 4 corresponds to a quantile function that displays: 

𝑃 = 𝐺(𝑥) в 𝑥,  

𝑋 = −
𝑚

ln
𝑛+1

𝑛

𝐸(ln 𝑃) (13) 

The mathematical expectation of a random variable 𝑋𝑛
(𝑛)

 is determined by the dependence: 

𝐸[𝑋𝑛
(𝑛)

] =
𝑚

ln
𝑛+1

𝑛

 [− ∫ 𝐸𝑖(ln 𝑃)
1

0
𝑑𝑝] =

𝑚 ln 2

ln
𝑛+1

𝑛

  (14) 

 

Distribution of minimum values 

An extremal distribution of type 5 is considered to be a continuous distribution whose 

probability density is a solution to the differential equation: 

𝑛𝜎2[1 − 𝑄𝑛(𝑥)]
𝑛−1

𝑛 �̅�𝑛(𝑥) + (𝑥 − 𝑚)𝑄(𝑥) = 0 (15) 

where 𝑚 and 𝜎2 are mathematical expectation and variance of the set of initial random variables. 

Nonlinear differential equation (15) satisfies the natural boundary conditions: 

𝑄𝑛(−∞) = 0, 𝑄𝑛(∞) = 1 (16) 
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and is completely determined by the first two moments (𝑚 and 𝜎2) of the initial random 

population and the sample size 𝑛. 

The extremal distribution of type 5 corresponds to the distribution function 𝐹(𝑥) of the 

original random variable, determined as a result of solving differential equation (15) with 

boundary conditions (15). 

In the appendix, the figures 11-20 (Figure 11; Figure 12; Figure 13; Figure 14; Figure 15; Figure 

16; Figure 17; Figure 18; Figure 19; Figure 20) show graphs of functions and numerical 

characteristics (mathematical expectation and variance) of an extremal distribution of type 5 for 

integer parameters 𝑛 from 1 to 10, obtained as a result of solving a nonlinear boundary value 

problem (15), (16). Calculation of the functions 𝑄𝑛(𝑋) is made for standard conditions (for the 

scale parameter 𝜎 = 1 the shift parameter 𝑚 = 0). 

For the values of the argument 𝑥 < 𝑚 − 3𝜎, the extreme distribution of type 5 

asymptotically approaches the normal distribution with density: 

𝑓(𝑥) =
1

√2𝜋 𝜎√𝑛
𝑒

−
(𝑥−𝑚)

2𝑛𝜎2 .  

As 𝑛 → ∞ the extremal distribution of type V approaches asymptotically the extremal 

distribution of type 6, whose quantile function has the form: 

𝑋𝑝 = 𝑚 − 𝜎√2𝑛 √−𝐸(ln(1 − 𝑃)) (17) 

An extreme type 7 distribution defines a continuous distribution, or density, whose 

probabilities are the solution of the differential equation: 

𝑚𝑛[1 − 𝑅𝑛(𝑥)]
𝑛−1

𝑛 �̈�𝑛(𝑥) + 𝑅𝑛(𝑥) = 0 (18) 

where 𝑚 is mathematical creation of a set of initial random variables. Differential equation (18) 

satisfies the boundary conditions and is completely determined by the first parameters 𝑚 and 𝑛: 

𝑅(0) = 0, 𝑅𝑛 (
𝑚𝑛

𝑛−1
) = 1 (19) 

An extreme distribution of type 7 corresponds to a quantile function that displays: 

𝑝 = 𝑅𝑛(𝑥) в 𝑥; 

𝑋𝑝 =
𝑚𝑛

𝑛−1
[1 − (1 − 𝑝)]

𝑛−1

𝑛  (20) 

The mathematical expectation of a random variable 𝑋𝑛
(𝑛)

 is determined by the dependence: 

𝐸[𝑋1
(𝑛)] =

𝑚𝑛

2𝑛−1
 (21) 

As 𝑛 → ∞, the type 7 extremal distribution asymptotically approaches the type 8 extremal 

distribution. 

An extremal distribution of type 8 is considered to be a uniform distribution with a 

distribution function: 

𝑅∞(𝑥) = {
𝑥𝑚−1, 𝑥 ≤ 𝑚

1, 𝑥 > 𝑚
 (22) 

And mathematical expectation: 

𝐸[𝑋1
(𝑛)] =

𝑚

2
. (23) 

 

Study results and discussion 
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This section contains a presentation of the most significant results of the study of the theory 

of extremal distributions of extremal random variables. 

The differential equation (I) defining the hypernormal distribution function 𝐹𝑛(𝑥) is the 

Euler-Lagrange equation of the following variational problem: 

𝐻𝑟 = − ∫ 𝑓𝑛(𝑥) ln(𝑥)𝑑𝑥 → max  
∞

−∞
 (24) 

∫ 𝑓𝑛(𝑥)𝑑𝑥 = 1
∞

−∞
 (25) 

∫ 𝑓(𝑥)𝑑𝑥 = 1
∞

−∞
 (26) 

∫ 𝑥𝑓(𝑥)𝑑𝑥 = 1
∞

−∞
 (27) 

∫ (𝑥 − 𝑚)2∞

−∞
𝑓(𝑥)𝑑𝑥 = 𝜎  2 (28) 

𝐹𝑛(𝑥) = 𝐹𝑛(𝑥). (29) 

The validity of this assertion follows from the proof of theories 1 and 2 below. 

Theory 1. Let 𝑋 is a random variable with density 𝑓(𝑥) > 0, 𝑥 ∈ (−∞, ∞), 𝐹𝑛(𝑋) is the 

distribution function of the extreme member of the variational series constructed from a sample 

of a finite size 𝑛 from the general population defined by the random variable 𝑋. Let, further, the 

first two central moments of the random variable 𝑋: 

𝑚 = ∫ 𝑠𝑓(𝑥)𝑑𝑥
∞

−∞

 

𝜎2 = ∫ (𝑥 − 𝑚)2𝑓(𝑥)𝑑𝑥.
∞

−∞

 

Then the entropy maximum is reached on a distribution that satisfies the differential 

equation (1). 

Proof. To do this, it is necessary to find the function 𝑓(𝑥) and 𝐹𝑛(𝑥), that ensure the 

maximum of functional (24) in the presence of holonomic constraint (29) and under 

isoperimetric conditions (25)-(28). According to the well-known theories of the calculus of 

variations, the Lagrange multipliers 𝜆(𝑥), 𝜐0, 𝜐1, 𝜐2 is introduced and the Euler-Lagrange 

equations for the extended function is composed. So, if: 

𝜕𝐿

𝜕𝑓
= −ln𝑓𝑛(𝑥) − 1,  

𝜕𝐿

𝜕𝑓
= −𝜆(𝑥)𝑛[𝐹(𝑥)]𝑛−1,  

𝜕𝐿

𝜕𝑓
= 𝜆(𝑥),  

the Euler-Lagrange equation for the extended function has the form: 
𝑑 ln𝑓𝑛(𝑥)

𝑑𝑥
+ 𝜆(𝑥) = 0,  

𝜆(𝑥)𝑛[𝐹(𝑥)]𝑛−1 + 𝜐1 + 2𝜐2(𝑥 − 𝑚) = 0. (30) 

The last equation, taking into account (30), can be written as: 

𝑛
𝑑 ln𝑓(𝑥)

𝑑𝑥
𝐹𝑛(𝑥) = 𝐹(𝑥)[𝜐1 + 2𝜐2(𝑥 − 𝑚)].  

After substituting 𝐹𝑛(𝑥) = [𝐹𝑛(𝑥)]𝑛, the extremal equation in the considered variational 

problem has the form: 

𝑛[𝐹𝑛(𝑥)]
𝑛−1

𝑛 �̈�𝑛(𝑥)[𝜐1 + 2𝜐2(𝑥 − 𝑚)]. (31) 

or 
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𝑛�̈�𝑛(𝑥)[𝐹𝑛(𝑥)]𝑛−1 + 𝑛(𝑛 − 1)[𝐹(𝑥)]𝑛−2𝐹2(𝑥) = �̈�(𝑥)[𝜐1 + 2𝜐2(𝑥 − 𝑚)]. (32) 

It should integrate equation (32) over the domain of the distribution function 𝐹(х), applying 

integration by parts to the first term. Due to certain properties of the distribution function and 

boundary conditions, one can make sure that the integral of the left side of equation (32) will be 

equal to 0, and the Lagrange multipliers 𝜐1 and 𝜐2 will be related to the mathematical expectation 

by the following final relation: 

𝜐1 + 2𝜐2 − 2𝜐2𝑚 = 0.  

It follows from here that 𝜐1 = 0. Multiplying the left and right sides of equation (32) by the 

independent variable and integrating the resulting equation in a similar way, one can find the 

second final relation connecting the factor with the mathematical expectation 𝑘 variance. 

Indeed, since: 

∫ [𝐹𝑛−1(𝑥)�̈�(𝑥) + (𝑛 − 1)𝐹𝑛−2(𝑥)𝐹2(𝑥)]𝑑𝑥𝐹𝑛−1(𝑥)𝐹(𝑥),
∞

−∞
  

then integrating the left side of the new differential equation obtained as a result of multiplication 

by the independent variable gives the following result: 

∫ [𝐹𝑛−1(𝑥)�̈�(𝑥) + (𝑛 − 1)𝐹𝑛−2(𝑥)𝐹2(𝑥)]
∞

−∞
𝑑𝑥 = 𝑥𝐹(𝑥)𝐹(𝑥),  

∫ [𝐹𝑛−1(𝑥)�̈�(𝑥) + (𝑛 − 1)𝐹𝑛−2(𝑥)𝐹2(𝑥)]
𝑥

−∞
𝑑𝑥 = 𝑥𝐹(𝑥)𝐹(𝑥) {

𝑥 = ∞
𝑥 = −∞

−

∫ 𝐹𝑛−1(𝑥)𝐹(𝑥)𝑑𝑥
∞

−∞
= −

1

𝑛
  

(the first term after the disclosure of uncertainty gives 0). 

Thus, 2𝜐2(𝑚2 − 𝜎2)2𝜐2𝑚2 = −1. Hence it follows that 𝜐2 =
1

2𝜎2. 

Substitution of the Lagrange multipliers 𝜐1 and 𝜐2 into differential equation (31) makes it 

possible to verify the validity of differential equations (1) and (3). The theory has been proven. 

Many problems of evaluating the efficiency of complex systems and probabilistic analysis 

of complex processes can be formulated in terms of the theory of order statistics and are related 

to the study of extreme values. As an illustration of the foregoing, two examples are given below 

that require such an approach. 

Example 1. The average time to prepare a product for use is 100 minutes, the standard 

deviation is 10 minutes. Five departments simultaneously began preparing for the shipment of a 

batch of five products. Find the probability of preparing the entire batch of products by the time 

𝑇 = 120 𝑚𝑖𝑛. 

Solution. Let 𝐹(𝑡) is the distribution function of the product preparation time for use (note 

that in the problem statement the product preparation time distribution law is not specified). Let 

𝑡1 is the time of product preparation by the first subdivision, and, и 𝑡2 is by the second one, and 

so on. 

Then the sequence 𝑡1, 𝑡2, …, 𝑡5 is a sample of independent identically distributed random 

variables. If to arrange this sequence by the value 𝑡1
(5)

≤ 𝑡1
(5)

≤ ⋯  ≤ 𝑡5
(5)

, the distribution of 

the extreme member of the variational series 𝑡5
(5)

 𝐹5(𝑡) = 𝐹5(𝑡) = 𝑃{𝑡5
(5)

< 𝑇} determines the 

probability that the random variable 𝑡5
(5)

 will be less than the number 𝑇. 

According to the condition of the problem, it is required to find 

𝐹5(𝑡)𝑃{𝑡5
(5)

< 120}.  
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In this case, it is worth noting that such a schematization of a probabilistic experiment 

suggests using the hypernormal distribution function with parameters 𝑛 = 5, to calculate the 

probability 𝑃{𝑡5
(5)

< 120}. 

Passing to normalised standard values, it is obtained: 

𝑥 =
𝑇−𝑚

𝜎
=

120−100

10
= 2.0.  

According to the graph for 𝐹5(𝑥) at 𝑥 = 2.0, it is found: 

𝐹5(2.0) = 0.75.  

Example 2. “Model of collection on alarm”. There are eight individual means (units) of the 

same type (ships, aircraft, etc.) located at the initial moment at the base (airfield, etc.), which, 

according to the alarm signal, should arrive in a given area. The average time of moving one 

object to this region is 𝑚 = 3 ℎ𝑟𝑠, the standard one is 0.5 ℎ𝑟. In how many hours it is necessary 

to give an alarm signal so that all eight units arrive in a given area with a probability 𝑃 at least 

80%. 

Solution. According to the graph 𝐹8(𝑥) для 𝑃 = 0.8, the quantile is found 𝑥0.8 = 3.1. 

Since 𝑥 = (𝑡 − 𝑚𝑡)𝜎−1, then 𝑡 = 𝑚1 + 𝜎1𝑥0.8 = 3 + 0.5 ∗ 3.1 = 4.55. 

It is necessary to dwell on one case of asymptotic behavior of the hypernormal distribution. 

Let 𝑛 → ∞ (practically for 𝑥 > 3), a natural consequence of this condition is 𝐹𝑛(𝑥) → 1. Then 

the differential equation (1) can be represented for standard conditions (𝑚 = 0, 𝜎 = 1) in the 

following form: 

𝑛�̈�𝑛(𝑥) + 𝑥�̇�𝑛(𝑥) = 0. (33) 

Separating the variables, it is found: 

𝑑 ln 𝑓𝑛(𝑥)

𝑑𝑥
= −

𝑥

𝑛
  (34) 

где 𝑓𝑛(𝑥) =
𝑑𝐹𝑛(𝑥)

𝑑𝑥
 – плотность гипернормального распределения. 

Integration of equation (34) makes it possible to verify the validity of the following result, 

presented in the form of the following theory. 

Theory 2. For large values of the argument, the hypernormal distribution asymptotically 

tends to the normal distribution with density (5). 

The result obtained can be somewhat strengthened by considering, instead of the 

hypernormal distribution function, the normal distribution function that satisfies the differential 

equation (1), with a variance depending on the value of the argument: 

𝑓𝑛(𝑥) =
1

√2𝜋𝐷(𝑥)
𝑒

−
𝑥2

2𝐷(𝑥).  

Using equation (1), it can be shown that the nature of the change in the variance 𝐷(𝑥) is 

determined by the following differential equation 

(𝑥2 − 𝐷)
𝑑𝐷

𝑑𝑥
− 2𝑥𝐷 +

2𝑥𝐷2

𝑛[𝜙(𝑥)]
𝑛−1

𝑛

= 0. (35) 

where 𝐷(𝑥) is Laplace function. 

It follows from differential equation (35) that for  

𝑥 → ∞, 𝐷(𝑥) → 𝜎2𝑛. 

We set ourselves the goal of determining the function of the limiting hypernormal 
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distribution (extreme distribution of type 2) in the following form: 

𝐹∞(𝑥) = 𝑃{√𝑛𝑋 < 𝑥}. (36) 

For sufficiently large values of n. For standard conditions (𝑚 = 0, 𝜎 = 1), the 

differentiated equation (1) can be represented (при 𝑛 → 0) in the following form: 

𝑛𝐹∞(𝑥)�̈�∞(𝑥) + 𝑥�̇�∞(𝑥) = 0. (37) 

It is possible to check that the change of the independent variable 𝑦 =
𝑥2

𝑛
 allows to 

transform equation (37) to the following form: 

2𝐹∞(𝑦)
𝑑2𝐹∞

𝑑𝑦2 +
𝑑𝐹∞

𝑑𝑦
= 0. (38) 

Separating the variables and integrating, it is found: 
𝑑𝐹∞

𝑑𝑦
= −

1

2
ln 𝐹∞. (39) 

From this it follows: 

𝑦 = −1 ∫
𝑑𝐹∞

ln 𝐹∞

𝑃

0
= −2𝐸𝑖(ln 𝑃) (40) 

where 𝑙𝑖𝑃 and 𝐸𝑖(𝑙𝑛𝑃) is integral logarithm and integral function respectively. 

Making the reverse transition from 𝑦 to 𝑥, it can be obtained the following result, presented 

in a compact form in the form of the following theory. 

Theory 3. The quantile function of the hypernormal distribution asymptotically (𝑛 → 0) 

approaches the function 

𝑥𝑝 = √2𝑛 √−𝐸𝑖(ln 𝑃).  

The proof of the theory follows from the above reasoning and confirms the validity of 

relation (6). 

As an example, illustrating the applicability of an extreme type 2 distribution, consider a test 

planning problem. 

Example 3. Tests for the failure-free operation of a product should be performed for no 

more than 100 days. It is assumed that by the end of the tests at least 90% of the ordered 

products should fail. A preliminary assessment of the reliability indicators showed that the 

operating time is average, but the failure 𝑇c  is 50 days, and its standard deviation 𝜎1 is equal to 

5 days. How many items do you need to order and test? 

Decision. If the law of the time-to-failure distribution is not known, and the ratio between 

the mathematical expectation and the standard expectation is such that there are grounds to 

consider the range of permissible values practically unlimited and the estimated number of 

ordered products 𝑛 > 10, then using the function of the limiting hypernormal distribution, 

according to Table 2, we define the argument (Table 2): 

𝐹∞(�̃�) = 0.9 (�̃� ≈ 1.9).  

Then: 
𝑇𝑔−𝑇0

𝜎𝑟√𝑛
= 1.9  

where 𝑇𝑔 = 100 𝑑𝑎𝑦𝑠 (directive test time). 

Therefore: 

𝑛 = (
𝑇𝑔−𝑇0

𝜎𝑟1.9
)

2

= (
100−50

5∗1.9
)

2

≈ 25 𝑖𝑡𝑒𝑚𝑠.  
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When solving practical problems, one can hardly hope for the completeness of information 

about the initial random variable, which makes it possible to estimate higher moments of its 

distribution. If the available information about the initial random variable allows us to give only 

an estimate of its mathematical expectation, then in the conditions of problem (24)-(29) the 

condition (28) is excluded, as will be shown below, the entropy maximum is achieved on a 

distribution that satisfies the differential equation (7). By inverting the distribution function 

𝐺𝑛(𝑥), one can obtain the following result, presented as a theory. 

Theory 4. Let 𝑋 be a random variable with density 𝑔(𝑥) > 0, 𝑥 ∈ (0, ∞), 𝐺(𝑥) is the 

distribution function of the maximum value from the set of 𝑛 random variables from the general 

population defined by the random variable 𝑋. Let, further, the mathematical expectation of the 

random variable 𝑋: 

𝑚 = ∫ 𝑥𝑔(𝑥)𝑑𝑥.
∞

0
  

Then the entropy maximum is reached on a distribution that satisfies the differential 

equation (7) with the quantile function (9). 

The proof will be as follows. Differential equation (7) is the Euler-Lagrange equation: 

𝑛[𝐺𝑛(𝑥)]
𝑛−1

𝑛 �̈�𝑛(𝑥) − 𝜈�̇�𝑛(𝑥) = 0 (41) 

𝐺𝑛(0) = 0, 𝐺𝑛(∞)  

where 𝜈 is undefined multiplier. 

The next variational problem: 

𝐻𝜀 = − ∫ �̇�𝑛(𝑥) ln �̇�𝑛(𝑥)𝑑𝑥 → 𝑚𝑎𝑥,
∞

0
  

∫ �̇�𝑛(𝑥)𝑑𝑥 = 1,
∞

0
  

∫ 𝑔(𝑥)𝑑𝑥 = 1,
∞

0
  

∫ 𝑥𝑔(𝑥)𝑑𝑥 = 𝑚,
∞

0
  

𝐺𝑛(𝑥) = [∫ 𝑔(𝑥)𝑑𝑥
∞

0
]

𝑛
. (42) 

Formal integration of equation (41) for 𝑛 = 1 gives an exponential distribution law, and for 

𝑛 ≠ 1 leads to a dependence of the form 

𝑥 = ∫
𝑑𝐺𝑛

𝜈𝐺𝑛

1
𝑛+𝐺𝑛(0)

 
𝐺𝑛

0
(43) 

Using the substitution 𝑧 = 𝐺𝑛

1

𝑛 (43), преобразуем к табличному: 

∫ 𝑥𝑚−1(1 + 𝛽𝑥)−𝜈𝑑𝑥 =
𝑢𝜇

𝜇

𝑢

0
𝐹12 (𝜈, 𝜇; 1 + 𝜇; −𝛽𝑢)  

where 𝐹12 (𝛼, 𝜌; 𝛾; 𝑠) is hypergeometric Gaussian function. Therefore: 

�̇�𝑛(0)𝑥 = 𝑍𝑛 𝐹12 (1, 𝑛; 𝑛 + 1; −𝛽𝑧) (44) 

or 

�̇�𝑛(0)𝑥 = 𝑝2𝐹1(1, 𝑛; 𝑛 + 1; 𝛽 √𝑝𝑛 ),  

where 𝛽 =
𝜈

�̇�𝑛(0)
 и 𝑝 = 𝐺𝑛(𝑥) = 𝑃{𝑥𝑛

(𝑛)
< 𝑥}. 

 The normalisation condition for the distribution function 𝐺𝑛(𝑥) implies the following 

relation: 
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𝛽 =
𝜈

�̇�𝑛(0)
= −1.  

Indeed, the quantile functions determined from relation (44) have the form: 

𝑥 =
𝑍𝑛

�̇�𝑛(0)
𝐹12 (1, 𝑛; 𝑛 + 1; −𝛽𝑍).  

For the original random variable: 

𝑥𝑝 =
𝑃

�̇�𝑛
𝐹12 (1, 𝑛; 𝑛 + 1; −𝛽 √𝑝𝑛 ).  

For the maximum value from a set of 𝑛 random variables. For 𝑥𝑝 → ∞, 𝑧 = √�̇�𝑛(𝑥)
𝑛

→

1 and 𝑝 = 𝐺𝑛(𝑥) → 1 and vice versa. 

The Gauss hypergeometric function can be represented as the following series: 

𝐹12 (𝛼, 𝜌; 𝛾; 𝑠) = ∑
𝑑𝑟𝛽𝑟𝑠𝑟

𝛾(𝑟)
 
𝑠𝑟

𝑟

∞
𝑟=0   

where 𝜆(𝑟) =
Г(𝛼+𝑟)

Г(𝛼)
. 

For 𝑝 = 1(𝑧 = 1), series 

∑
1(𝑟)𝑛(𝑟)

(1+𝑛)𝑟
 
(−𝛽)𝑟

𝑟!

∞
𝑟=0  (45) 

should diverge. 

According to the d’Alembert test, series (45) will diverge if the relation follows: 

1(𝑟+1)𝑛(𝑟+1)(−𝛽)(𝑟+1)(𝑛+1)(𝑟)𝑟!

(1+𝑛)(𝑟+1)1(𝑟)𝑛(𝑟)(−𝛽)𝑟(𝑟+1)!
≥ 1.  

Or after transformation: 

−𝛽 =
𝑛+𝑟+2

𝑛+2
≥ 1.  

Therefore, in order for the series to diverge (the normalisation condition is satisfied), it is 

necessary that for the sufficiently large 𝑟(𝑟 → ∞) complex: 

𝛽 =
𝜈

�̇�𝑛(0)
= −1.  

To determine the density value at the initial point �̇�𝑛(0), one integrates relation (44) taking 

into account the obtained value for ß: 

∫ �̇�𝑛(0)𝑥𝑑𝑧
1

0
= ∫ 𝑧𝑛 𝐹12 (1, 𝑛; 𝑛 + 1; 𝑧)𝑑𝑧.

1

0
  

The left side of the equation in accordance with the definition 𝑧 = [𝐺𝑛(𝑥)]
1

𝑛 is the product 

of the value of the distribution density at zero �̇�𝑛(0) and the mathematical expectation of the 

original random variable. It can be shown that the right side of the equation is equal to one. 

Indeed, by representing the hypergeometric function as a series and changing the order of 

summation and integration, it is defined: 

∫ 𝑧𝑛1

0
∑

1(𝑟)𝑛(𝑟)

(1+𝑛)𝑟

∞
𝑟=0

(𝑧)𝑟

𝑟!
𝑑𝑧 = ∑

1(𝑟)𝑛(𝑟)

(1+𝑛)𝑟

∞
𝑟=0

1

𝑟!
𝑑𝑧 =

𝑛

(𝑛+𝑟)(𝑛+𝑟+1)
.  

Series ∑
𝑛

(𝑛+𝑟)(𝑛+𝑟+1)

∞
𝑟=0  can be represented as the difference between two series: 

∑
𝑛

(𝑛+𝑟)(𝑛+𝑟+1)

∞
𝑟=0 = 𝑛 ∑

1

(𝑛+𝑟)

∞
𝑟=0 − 𝑛 ∑

1

(𝑛+𝑟+1)

∞
𝑟=0 ,  

which after transformation can be represented as follows: 
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𝑛 ∑
1

(𝑛+𝑟)

∞
𝑟=0 − 𝑛 ∑

1

(𝑛+𝑟+1)

∞
𝑟=0 = 𝑛 ∑

1

𝑚
∞
𝑚=𝑛 − 𝑛 ∑

1

𝑚

∞
𝑚=𝑛+1 = 𝑛

1

𝑛
+ ∑

1

𝑚
∞
𝑚=𝑛 −

𝑛 ∑
1

𝑚

∞
𝑚=𝑛+1 = 1.  

Thus, �̇�𝑛(0)𝑚 = 1. Therefore, �̇�𝑛(0) = 𝑚−1 and the Lagrange multiplier 𝜈 = 𝛽�̇�𝑛(0) =

−𝑚−1. 

Substituting the value of the Lagrange multiplier into the differential equation (41) makes it 

possible to verify the validity of the differential equation (5) and the quantile function (9). The 

theory has been proven. 

It is also necessary to clarify the method for determining the mathematical expectation of 

the largest value for the case under consideration. In a way analogous to that which was applied 

in the derivation of the formula for determining the value of the density at zero �̇�𝑛(0), one can 

show that: 

𝐸[𝑋𝑛
(𝑛)

] = 𝑚 ∑
1(𝑟)𝑛(𝑟)

(𝑛+𝑟)(2𝑛+2)

∞
𝑟=0 .  

To sum up, it suffices to integrate the quantile function (9): 

𝐸[𝑋𝑛
(𝑛)

] = ∫ 𝑥𝑝𝑑𝑝
1

0
= 𝑚 ∫ 𝑝2𝐹1(1, 𝑛; 𝑛 + 1; √𝑝𝑛 )𝑑𝑝

1

0
.  

Representing the hypergeometric function as a series and rearranging the operations of 

summation and integration, one can find: 

𝐸[𝑋𝑛
(𝑛)

] = 𝑚 ∑
1(𝑟)𝑛(𝑟)

(𝑛+𝑟)𝑟!

∞
𝑟=0 ∫ 𝑝1+

𝑟

𝑛𝑑𝑝
1

0
= 𝑚 ∑

𝑛2

(𝑛+𝑟)(2𝑛+2)

∞
𝑟=0 .  

In table 3 shows the values of the sum 𝑆𝑛 , which make it possible to estimate the 

mathematical expectation of the maximum value from samples of 𝑛 to 10 (for 𝑛 > 10, one can 

use, as will be shown below, the asymptotic properties of the obtained extreme distributions of 

extreme values) (Table 3). 

If we set ourselves the goal of determining the function of the limiting extremal distribution 

of type 4, then, by performing constructions similar to the constructions used in the proof of 

Theory 3, we can obtain the result presented in the form of the following theory, given by virtue 

of obviousness without proof. 

Theory 5. The quantile function of type 3 extremal distribution asymptotically (𝑛 → ∞) 

approaches the function: 

𝑥 =
𝑚

ln
𝑛+1

𝑛

𝐸𝑖(ln 𝑃).  

As an example, illustrating the applicability of extremal distributions of types 3 and 4, 

consider the problem of “forecast by one point”. 

Example 4. A discrete random process 𝑥(𝑛) is observed, its value 𝑥(1) is fixed at the first 

observation point. What is the expected value of the maximum value at the second point at the 

20th point? 

Solution. It is natural to take 𝑚 = 𝑥(1) as an estimate of the mathematical expectation of 

the average process under one observation. Then, using Table 3, one finds 𝐸 [max 𝑋(2)] =

𝑥(1) ∗ 1.1628 and, using dependence (14), one determines: 

𝐸 [max 𝑋(20)] = 𝑥(1)
ln 2

ln
21

20

= 𝑥(1) ∗ 14.2067.  
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Further, it is necessary to consider some features of the construction of extremal 

distributions of minimal values. Differential distribution type 5 𝑄𝑛(𝑥) is the Euler-Lagrange 

equation of a variational problem similar to problem (24)-(29). The difference in the formulation 

of the variational problem lies in the replacement of relation (29) by the dependence: 

𝑄𝑛(𝑥) = 1 − [1 − 𝐹(𝑥)]𝑛 (46) 

defining the distribution function of the smallest value 𝑄𝑛(𝑥)  through the distribution function 

of the original random variable 𝐹(𝑥). This implies that 

𝐻𝜀 = − ∫ �̇�𝑛(𝑥) ln �̇�𝑛(𝑥)𝑑𝑥 → 𝑚𝑎𝑥
∞

0
  

under isoperimetric conditions (25)-(28) and holonomic constraint (46). 

The solution of this variational problem allows us to formulate a result similar to that 

stated in Theory 1. 

Theory 6. Let 𝑋 be a random variable with density 𝑓(𝑥) > 0, 𝑥 ∈ (−∞, ∞), 𝑄𝑛(𝑥) is the 

distribution function of the smallest (leftmost) member of the variational series constructed from 

a sample of finite size n from the general set determined by the random variable 𝑋. Let, further, 

the two first central moments of the random variable 𝑋: 

𝑚 = ∫ 𝑥𝑓(𝑥)𝑑𝑥,
∞

−∞
  

𝜎2 = ∫ (𝑥 − 𝑚)2𝑓(𝑥)𝑑𝑥.
∞

−∞
  

Then the entropy maximum is reached on a distribution that satisfies the differential 

equation (15). 

Using dependence (46) and differential equation (15), one can verify that the extremal 

distribution 𝑄𝑛(𝑥) corresponds to the distribution function 𝐹(𝑥) of the original random 

variable, determined by differential equation (3). 

As an example of using a type 5 distribution, consider the following problem. 

Example 5. Under the conditions of Example 1, find the probability of preparing the first 

product by the time 𝑇 = 100 𝑚𝑖𝑛. 

Solution. The solution to this problem is reduced to a sequence of reasoning and actions 

applied in solving Example 1. As a result, passing to the normalized standard values 𝑥 =
𝑇−𝑚

𝜎
=

100−100

10
= 0 according to the schedule 𝑄5(𝑥) for 𝑥 = 0, one finds 𝑄5(𝑥) = 𝑃(𝑡(1)

5 < 100) =

0.72. 

Analytic properties of the function 𝑄𝑛(𝑥)  are similar to those of the function 𝐹𝑛(𝑋). 

Therefore, for small values of the argument 𝑥 < 𝑚 − 3𝜎  the extreme distribution of type V 

asymptotically approaches the normal distribution about the parameters 𝑚 and 𝑛𝜎2, and for 

𝑛 → ∞ it degenerates into an extreme distribution of type 6, the quantile function of which is 

described by dependence (17). 

Generalising the results concerning extremal distributions of types 1 and 5, it seems 

appropriate to find the distribution function of the order statistics 𝑋𝑚
(𝑛)

(𝑚 = 1, 2, … , 𝑛), which 

provides the entropy maximum under isoperimetric conditions (26)-(28). If the initial population 

distribution 𝐹(𝑥) has density 𝑓(𝑥), then the distribution of order statistics 𝑋𝑚
(𝑛)

 имеет 

плотность вида: 
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𝑓𝑛𝑚(𝑥) =
𝑑

𝑑𝑥
𝑃{𝑋𝑛

(𝑛)
< 𝑥} =

𝑛!

(𝑚−1)(𝑛−𝑚)
𝐹(𝑥)𝑚−1[1 − 𝐹(𝑥)]𝑛−𝑚𝑓(𝑥) (47) 

The extremal distribution of the order statistics (the favorite member of the variational 

series) is determined by the solution of the Euler-Lagrange equation of the following variational 

problem: 

𝐻𝜀 = − ∫ 𝑓𝑚𝑛(𝑥)
∞

0
ln 𝑓𝑛𝑚(𝑥) 𝑑𝑥 → 𝑚𝑎𝑥 (48) 

1 = ∫ 𝑓𝑛𝑚(𝑥)
∞

−∞
𝑑𝑥 (49) 

𝑚 = ∫ 𝑥𝑓(𝑥)
∞

−∞
𝑑𝑥 (50) 

𝜎2 = ∫ (𝑥 − 𝑚)2∞

−∞
𝑓(𝑥)𝑑𝑥 (51) 

𝐹𝑛𝑚(𝑥) =
𝑛!

(𝑚−1)!(𝑛−𝑚)!
∫ 𝑦𝑚−1(1 − 𝑦)𝑛−𝑚𝐹(𝑥)

0
𝑑𝑦 (52) 

Applying the course of reasoning and those transformations and constructions that were 

used in the proof of Theory 1, we can obtain a nonlinear differential equation with respect to 

the function 𝐹𝑛𝑚(𝑥): 

𝜎2�̈�𝑛𝑚 +
(𝑥−𝑚) ∑

[𝐹𝑛𝑚(𝑥)−𝐹(𝑥0)]𝜈

𝜈!
𝐷𝜈𝐹𝑛𝑚∞

𝜈=0

𝐹𝑛𝑚(𝑥0)
 (53) 

Satisfying the boundary conditions 𝐹𝑛𝑚(−∞) = 0, 𝐹𝑛𝑚(∞) = 1. 

Depending on (53) 𝐷 =
(𝑚−𝑛)!(𝑛−𝑚)!

𝑛!
𝐹1−𝑚(1 − 𝐹)𝑚−𝑛 𝑑

𝑑𝐹
 is conversion operator with 

properties 𝐷𝜈 = 𝐷(𝐷𝜈−1), 𝐷0 = 𝐹. 

The reference value 𝑥0 for the function 𝐹𝑛𝑚(𝑥) can be chosen at any point where the 

distribution density (47) does not vanish. Note that for 𝑚 = 𝑛 differential equation (53) 

degenerates into equation (1), and for 𝑚 = 𝑛 into equation (15). 

Thus, the solution of the variational problem (48)-(53) and the representation of the 

nonlinear part of the differential equation using an operator series (S. Lie’s series) allows us to 

represent the result obtained in a compact form in the form of the following theory. 

Theory 7. Let 𝑋 be a random variable with density 𝑓(𝑥) > 0, 𝑥 ∈ (−∞, ∞), 𝐹𝑛𝑚(𝑋) is the 

distribution function of the order statistics 𝑋𝑚
(𝑛)

 for a variational series constructed from a 

sample of finite size n from the general population determined by the random variable 𝑋. 

Further, let the first two central moments of the random variable 𝑋 be known: 

𝑚 = ∫ 𝑥𝑓(𝑥)𝑑𝑥
∞

−∞
  

𝜎2 = ∫ (𝑥 − 𝑚)2𝑓(𝑥)𝑑𝑥
∞

−∞
.  

Then the entropy maximum is reached for a distribution that satisfies the differential 

equation (53). 

In conclusion, it should note some features of extremal distributions of types 7 and 8. 

Differential equation (18) is the Euler-Lagrange equation of a variational problem similar to 

problem (42). The difference in the formulation of the problems lies in the replacement of the 

last holonomic constraint 𝐺𝑛(𝑥) = [∫ 𝑔(𝑥)𝑑𝑥
𝑥

0
]

𝑛
 by the dependence 𝑅𝑛(𝑥) = 1 − [1 −

∫ 𝑟(𝑥)𝑑𝑥
𝑥

0
]

𝑛
, which determines the distribution function of the smallest value 𝑅𝑛(𝑥) through 

the distribution function of the original random variable𝑅(𝑥) = ∫ 𝑟(𝑥)𝑑𝑥
𝑥

0
. 
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Integration of the differential equation (18) allows one to obtain the quantile function (20), 

and the passage to the limit 𝑛 → ∞  yields dependence (22). A characteristic feature of these 

distributions is that they are realised in the class of finite functions (truncated on the right). It 

should also be noted that the dependencies for the mathematical expectations of the smallest 

values (21) and (23) can find practical application in the express evaluation of samples from an 

unknown general population. 

The asymptotic behavior of the largest observation in a sample of size 𝑛 from a distribution 

with distribution function 𝐹(𝑥) was a problem in the “classical” theory of extreme values. The 

central result of this theory (the theorem on three types of limit distributions) was first obtained 

by Fisher and L. Tippett in 1928 (Tippett, 2012) and was later proved in full generality in 1943 by 

B.V. Gnedenko (Gnedenko, 1943). A systematic exposition of the theory of limiting distributions 

of extreme quantities and applications to technical problems can be found in Gumbel’s 

monograph (Gumbel, 2012). However, here it is necessary to note some specific limitations of 

the asymptotic theory of extremal quantities. First of all, all extreme value distributions are 

derived either from the exact original distribution or from a distribution of some type. The 

original distribution from which the extreme values are selected must belong to one of the three 

types of distributions. In reality, the analytic properties of the original distribution are rarely 

known, and hence the conditions for using the asymptotic theory of extreme values do not 

always correspond to observations and practical applications. Note that in the “classical” theory 

of extreme values, when constructing parametric forms of distributions of extreme values, the 

key idea (stability postulates) used earlier by Fisher and L. Tippett is used, which consists in the 

following. Since the largest observation in a sample of size 𝑚𝑛 can be considered as the largest 

member in a sample of size 𝑛, consisting of the maximum members of samples of size 𝑚, and 

since in the case of the existence of a limit distribution 𝛬(𝑥) both of these distributions will tend 

to 𝛬(𝑥) at 𝑚 → ∞, then Λ(𝑥)  must satisfy the relation Λ𝑛(𝑎𝑛𝑥 + 𝑏) = Λ(𝑥),  i.e., the largest 

observation in the sample of size 𝑛 from the distribution with the distribution function 𝛬(𝑥) 

must, after appropriate normalisation, itself have a limit distribution function 𝛬(𝑥). The solution 

of this functional equation with respect to 𝛬(𝑥) allows us to obtain the following three 

parametric forms (three types of distributions of extreme values built on the stability postulate): 

Type 1: Λ1(𝑥) = 𝑒𝑥𝑝(−𝑒−𝑥) , −∞ < 𝑥∞. 

Type 2: Λ2(𝑥) = {
0, 𝑥 ≤ 0

𝑒𝑥𝑝, (−𝑥−𝑎), 𝑎 > 0, 𝑥 > 0
. 

Type 3: Λ3(𝑥) = {
𝑒𝑥𝑝(−(−𝑥)𝑎) , 𝑎 > 0, 𝑥 ≤ 0

1, 𝑥 > 0
. 

In this case, it is logical to compare the distributions of extreme values based on different 

construction principles. As an example, consider the graphs of distribution functions 𝐹∞(𝑥) and 

Λ1(𝑥) Λ1(𝑥) = 𝑒𝑥𝑝 (−𝑒−
𝑥−𝑎

𝑏 ). Naturally, the functions must be compared with the same scale 

and position parameters. Note that if a sample 𝑥1, 𝑥2, … , 𝑥𝑘 is given from the population with 

the distribution function Λ1(𝑥) = exp (−exp (−
𝑥−𝑎

𝑏
)), as estimates 𝑎∗ and 𝑏∗ of unknown 

parameters 𝑎 and 𝑏, one can take solutions of equations (6): 

1

𝑘
∑

𝑥𝑖−𝑎∗

𝑏∗
𝑘
𝑖=1 = 𝑐  
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1

𝑘
∑ {−

𝑥𝑖−𝑎∗

𝑏∗
} = 1,𝑘

𝑖=1   

 

where 𝐶 is Euler constant. 

Equating the empirical values of the moments of random variables 
1

𝑘
∑ 𝑥𝑖

𝑘
𝑖=1  and 

1

𝑘
∑ exp (−

𝑥𝑖

𝑏
)𝑘

𝑎  with the theoretical ones for the distribution 𝐹∞(𝑥), after some algebraic 

transformations, one can find equations relating the parameters 𝑎∗ and 𝑏∗ of the distribution 

function Λ1(𝑥) and 𝑚, and 𝜎√2𝑛  of the distribution function 𝐹∞(𝑥): 

𝑚 + 𝜎√2𝑛𝐼1 = 𝑎∗ + 𝑐𝑏∗ (54) 

𝑒−
𝑚

𝑏∗𝐼2 (
𝜎√2𝑛

𝑏
) = 𝑒−

𝑎∗

𝑏∗  

where 

𝐼2 = ∫ √−𝐸𝑖 (ln 𝑝)𝑑𝑝 = 0.6967,
1

0
  

𝐼2 (
𝜎√2𝑛

𝑏
) = ∫ 𝑒−

𝜎√2𝑛√−𝐸𝑖(ln 𝑝)

𝑏
1

0
𝑑𝑝.  

With appropriately chosen normalizing and centering parameters 𝑎∗ = 0 and 𝑏∗ = 1, the 

limiting hypernormal distribution corresponds from equations (54) to the values of the 

parameters 𝜎√2𝑛 and 𝑚, determined from the following relations obtained from the systems 

of equations (54): 

𝜎√2𝑛 + ln 𝐼2 (𝜎√2𝑛) = 0,  

𝑚 = 0 − 𝜎√2𝑛𝐼1.  

The figure (Figure 21) shows the graph of the function Λ(𝑥) = 𝑒−𝑒−𝑥
 and the graph of the 

function of the limiting hypernormal distribution corresponding to it in terms of parameters 

𝐹∞(𝑥) = −1.48 + 3√−𝐸𝑖(ln 𝑃). 

A comparison of the graphs indicates the closeness of the statistical laws of extreme values 

obtained under different assumptions. On the other hand, it is not possible to introduce partial 

ordering into the set of distribution functions of the form Λ1(𝑥) and 𝐹∞(𝑥) (the graphs illustrate 

this circumstance): the function Λ1(𝑥)  does not dominate the function in the sense of the first 

order. Therefore, when choosing a mathematical model of the mechanism for the formation of 

extreme random variables, when constructing estimates that guarantee their effectiveness, etc., 

one should be guided by the stability postulate, if it is known that the distribution of the initial 

random variable belongs to the exponential type distribution (4), and by the principle of 

maximum uncertainty, if only estimates of the mathematical expectation and the variance of the 

original random variable (1) are known. 

As an example, illustrating the possibility of using the considered laws of distributions of 

extreme values, it is presented the distribution function of the levels of water rise at the mouth 

of the Neva, constructed according to statistical data fixed since 1703 (7): 

Λ1(𝑥) = 𝑒𝑥𝑝 {−𝑒
−

𝑥−221,4

30,38 },  

𝑥 = 183 + 7.97√2𝑛√−𝐸𝑖(ln 𝑃)  

where 𝑥 is level of Neva’s mouth water rise in centimeters. 
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Comparison of the probabilities of occurrence of events 𝑃{𝑥 ≤ 200}𝑛, built on these 

dependencies, is similar to the nature of dependencies (Figure 21). 

The discussion of the applications of the theory of extrema of sequences of random 

variables is given fragmentarily and does not yet cover the whole variety of possible problems 

related to extreme values, because “... nature speaks to us in the language of mathematics” (G. 

Galileo) and it is quite appropriate that this area is worthy of study on its own. yourself. 

Therefore, it seems appropriate to proceed to the consideration of the basic problems of 

constructing models and some generalisations, confining ourselves mainly to the formulation of 

the main results. 

 

Conclusion 

Thus, in the study course, the definition of an extreme value within the framework of the 

theory was refined, the typology of the distribution of maximum values was analysed, seven 

theories of the hypernormal distribution were identified and their proofs were presented, and 

practical examples of the application of each theory were given. The practical significance of the 

study of extreme random variables models in various areas of industrial human activity was 

confirmed. 

The materials of the study can be used in the widest range: from application in risk 

management of industrial production to predicting the probabilities of natural phenomena, 

which makes it possible to prevent significant economic and social losses of society, as well as 

make a tangible contribution to programming the probabilities of the development of the society 

of the future. 
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Appendix 

 

Table 1. Extreme distributions and statistical characteristics of the original random variable 

 

Table 2. Values of the function of the limiting hypernormal distribution 𝐹∞(𝑥), whose argument is the 

value �̃� 

 

Table 3. The value of the sum 𝑆𝑛 of a series from 1 to 5 
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Figure 1. Distribution function 𝐹1(𝑥) =

𝑃{𝑥1
(1)

< 𝑥}; (𝑚 = 0, 𝜎2 = 1) 

Figure 2. Distribution function 𝐹2(𝑥) = 𝑃{𝑥2
(2)

<

𝑥}; (𝑚 = 0.4634; 𝜎2 = 1.1077) 

Figure 3. Distribution function 𝐹3(𝑥) =

𝑃{𝑥3
(3)

< 𝑥}; 𝑚 = 0.5355; 𝜎2 = 1.3594 

Figure 4. Distribution function 𝐹4(𝑥) =

𝑃{𝑥4
(4)

< 𝑥}; 𝑚 = 0.9764; 𝜎2 = 1.6622 

Figure 5. Distribution function 𝐹5(𝑥) =

𝑃{𝑥5
(5)

< 𝑥}; 𝑚 = 1.1355; 𝜎2 = 2.0190 

Figure 6. Distribution function 𝐹6(𝑥) = 𝑃{𝑥6
(6)

<

𝑥}; 𝑚 = 1.2458; 𝜎2 = 2.3316 
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Figure 7. Distribution function 𝐹7(𝑥) =

𝑃{𝑥7
(7)

< 𝑥}; 𝑚 = 1.4656; 𝜎2 = 2.9520 

Figure 8. Distribution function 𝐹8(𝑥) =

𝑃{𝑥8
(8)

< 𝑥}; 𝑚 = 1.5504; 𝜎2 = 3.3127 

Figure 9. Distribution function 𝐹9(𝑥) =

𝑃{𝑥9
(9)

< 𝑥}; 𝑚 = 1.5748; 𝜎2 = 3.5122 

Figure 10. Distribution function 𝐹10(𝑥) =

𝑃{𝑥10
(10)

< 𝑥}; 𝑚 = 1.5792; 𝜎2 = 3.6438 

Figure 11. Distribution function 𝑄1(𝑥) =

𝑃{𝑥1
(1)

< 𝑥}; 𝑚 = 0; 𝜎2 = 1 

Figure 12. Distribution function 𝑄2(𝑥) =

𝑃{𝑥1
(2)

< 𝑥}; 𝑚 = −0.5321; 𝜎2 = 1.0492 
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Figure 13. Distribution function 𝑄3(𝑥) =

𝑃{𝑥1
(3)

< 𝑥}; 𝑚 = −0.7330; 𝜎2 = 1.1250 

Figure 14. Distribution function 𝑄4(𝑥) =

𝑃{𝑥1
(4)

< 𝑥}; 𝑚 = −0.9445; 𝜎2 = 1.1546 

Figure 15. Distribution function 𝑄5(𝑥) =

𝑃{𝑥1
(5)

< 𝑥}; 𝑚 = −1.0692; 𝜎2 = 2.1477 

Figure 16. Distribution function 𝑄6(𝑥) =

𝑃{𝑥1
(6)

< 𝑥}; 𝑚 = −1.1950; 𝜎2 = 2.5258 

Figure 17. Distribution function 𝑄7(𝑥) =

𝑃{𝑥1
(7)

< 𝑥}; 𝑚 = −1.2977; 𝜎2 = 2.9194 

Figure 18. Distribution function 𝑄8(𝑥) =

𝑃{𝑥1
(8)

< 𝑥}; 𝑚 = −1.4451; 𝜎2 = 3.2427 
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Figure 19. Distribution function 𝑄9(𝑥) =

𝑃{𝑥1
(9)

< 𝑥}; 𝑚 = −1.5573; 𝜎2 = 3.6019 

Figure 20. Distribution function 𝑄10(𝑥) =

𝑃{𝑥1
(10)

< 𝑥}; 𝑚 = −1.5703; 𝜎2 = 4.0949 

Figure 21. Distribution function 𝐹∞(𝑥) ∗ 𝛬1(𝑥); 𝑚 =
−1.5573; 𝜎2 = 3.6019 


