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Hypernormal distribution theory: Analysis of the set of extreme random variables
models

Abstract: The analysis of the set of extreme random variables models is still an extremely topical topic in
many areas of mathematical research in the theory and practice of managing production processes due
to its specificity and great interest in finding an expectation and stability indicators set studied in practical
economics. Calculations of applied mathematics help to determine tentatively possible boundary
parameters of various models, i.e., expectations, despite the fact that theoretical calculations do not have
a direct association with practical data. Nevertheless, the consideration of extreme models of extreme
random variables is still relevant in many areas of science and industry. The study subject was the
hypernormal distribution theory. The study object was a set of extreme random variables models. The
study purpose was a comprehensive analysis of many models of extreme random variables. To achieve
the purpose and solve the tasks formulated on its basis, empirical, analytical and comparative methods of
data analysis and the method of mathematical modelling, which contributed to the study of the materials
presented in this article, were used. In the study course, materials from the works of such leading world
experts in extreme value theory and programming K. Beck, M. Fowler, L. Tippett, E. Gumbel, K. Auer,
R. Miller, and Scott W. Ambler and researchers as V.L.. Khatskevich, B.V. Gnedenko, V.A. Akimov, V.A.
Bykov, E.Yu. Shchetinin, K.M. Nazarenko, L.P. Kvashko, A.S. Losev, V.S. Mikhailov, V.A. Popov, E.R.
Smolyakov. In the study course, the definition of an extreme value within the framework of the theory
was refined, the typology of the distribution of maximum values was analysed, seven theories of the
hypernormal distribution were identified and their proofs were presented, and practical examples of the
application of each theory were given. The practical significance of the study of extreme random variables
models in various areas of industrial human activity was confirmed. The materials of the study can be
used in the widest range: from application in risk management of industrial production to predicting the
probabilities of natural phenomena, which makes it possible to prevent significant economic and social
losses of society, as well as make a tangible contribution to programming the probabilities of the
development of the society of the future.
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I1érp Beanamuaosuy Komuccapos, BEITYCKHUK acIIIPaHTYPHL, | OCyAapCTBEHHEIN YHUBEPCHTET
MOPCKOro u peaHoro gaora um. aamupasa C.O. Makaposa. Caukr-IlerepOypr, Poccus.

Teopua TUIICPHOPMAABHOI'O PACIIPEACACHUA: AHAAN3 MHO>KECTBA MOAeAef/'I
IKCTPEMAABHBIX CquaﬁHBIX BCAUYMTH

Amnnomayus: AHAAN3 MHOKECTBA MOAEACH 9KCTPEMAABHBIX CAYYAHHBIX BEAUYHH AO CHX IIOP ABAACTCA
KpaiHe aKTyaABHONW TEMOW BO MHOTHMX OOAACTAX MATEMATHYECKHX HCCACAOBAHHI TEOPHUU M IIPAKTUKA
VIIPABACHHSA IIPOU3BOACTBEHHBIMH IIPOLIECCAMU B CHAY CBOCH CHEU(HIHOCTH U OOABIIIOIO HHTEpeca
K IIOMCKy MHOKECTBA IIOKAa3aTEACH OKHAAEMOCTH U CTADHABHOCTH, HCCACAYEMBIC B IIPAKTHYECKOMN
3KOHOMUKe. PacuéTsl IPUKAGAHON MATEMATUKH IOMOTAIOT OIPEACAATH OPHEHTHPOBOYHO BO3MOKHBIE
IIOIPAHUYHBIE ITAPAMETPEL BCEBO3MOMKHBIX MOACACH, T.€., OKHAAHHUNA, HECMOTpA HA TO dTO
TEOPETHYECKHE PACUETH HE NMEIOT IIPAMOI aCCOLMAIINH C IIPAKTHYECKUME AAHHBIME. TeM He MeHee,
PACCMOTPEHHE SKCTPEMAABHBIX MOAEACH 3KCTPEMAABHBIX CAYYAHHBIX BEAHYHH AO CHX IIOP ABAACTCH
AKTYAABHEIM BO MHOTHX OOAACTfIX HAYKH U IPOMBIIIACHHOCTH. [IpeAMETOM HCCACAOBAHHA ABAAAACDH
TeopeMa THIIEPHOPMAABHOTO pacrpescAcHus. OOBEKTOM HCCACAOBAHUSA ABASAOCH MHOMKECTBO MOACACH
3KCTPEMAABHBIX CAYYARHBIX BEAUYIHH. L[[€ABIO AAHHOTO HMCCACAOBAHMS ABASACH KOMIIACKCHBI aHAAW3
MHOKECTBA MOAEACH SKCTPEMAABHBIX CAYYANHBIX BEAHYNH. AAS AOCTIDKEHHSA IIOCTABACHHON IIEAW U
pemrenns  cOPMYAHPOBAHHBIX HAa €€ OCHOBAaHHM 33Aa9 HCIIOAB30BAAHMCH OMIIHPHUYCCKUII,
AHAAUTHYCCKUI M CPABHHTEABHBIH METOABI AHAAHM3a AAHHBIX N METOA MaTEMATHYIECKOIO
MOAEAHPOBAHUSA, KOTOPbIE CLHOCOOCTBOBAAK HCCACAOBAHHIO MATEPHAAOB, IIPEACTABACHHBIX B AAHHOM
cratbe. B x0Ae mccacaoBaHmA OBIAN HCIIOAB30OBAHBI MATEPHUAABI TPYAOB TAKHX OTCYCCTBEHHBIX
nccaepoBareaeit kak B.A. Xankesuy, b.B. I'meaenxo, B.A. Axkumos, B.A. beikos, E.1O. [llertnana, K.M.
Haszapenko, A.Il. Ksamko, A.C. Aoces, B.C. Muxaiiros, B.A. ITomos, 8.P. CMoABsKOB, a Takke
MATCPHAABl BECAYIIHX 3aPYOCKHBIX CIICIIMAANCTOB B ODAACTH TEOPHH S3KCTPEMAABHBIX 3HAYCHUI U
nporpammuposarus K. beka, M. ®@ayaepa, A. Tumnmerra, 9. I'ymGeas, K. Ayspa, P. Muaaep, u Crorra
B. OMbaepa. B xoae mccAcAOBaHEA OBIAO YTOYHEHO OIIPEACACHIE SKCTPEMAABHON BEAMYHHEL B PAMKAX
TCOPHH, IPOAHAAHSHPOBAHA THIIOAOTHIO PACIIPCACACHUA MAKCHIMAABHBIX BCATYIH, OIIPCACACHE CCMb
TEOpEeM TIHIIEPHOPMAABHOIO PACIPECACACHUA M IIPEACTABACHBI HMX AOKA3ATCABCTBA, 4 TAKKE AAHBI
IIPAKTUYICCKUEC IIPUMEPH MPHUMCHCHHA KAKAOM M3 TeopeM. Tem caMmeiM, OBIAA ITOATBECPKACHA
IIPAKTUYCCKasd 3HAYUMOCTh HCCACAOBAHHA BAPHATHBOB O9KCTPEMAABHBIX MOACACH O9KCTPEMAABHBIX
CAVIAHHBIX BEAUYHMH B PASAMYHBIX ODAACTAX HHAYCTPUAABHOHI ACATEABHOCTH YeAOBeKa. MaTepmasss
AAHHOTO HCCACAOBAHUA MOTYT OBITH HCIIOAB30BAHBI B CAMOM IIMTHPOKOM CIICKTPE: OT IPUMCHCHUA B
O0DAACTH PHCK-MECHCAKMEHTA IIPOMEIIIIACHHOTO IIPOM3BOACTBA AO IIPEACKA3AHHSA BEPOATHOCTCH
IIPHPOAHBIX ABACHHUI, UTO ITO3BOASICT IIPCAYIIPCAUTH 3HAUNTCABHBIC SKOHOMHYCCKHCE M COLIMAABHEIC
IIOTepH OOIMECTBA, 4 TAKKE BHECTH OIIYTHUMEIH BKAAA B IPOTPAMMHUPOBAHHC BEPOATHOCTCH PA3BUTI
obrrecTBa OYAyIIIETO.

Karueswie caosa: SKCTPEMAABHBIC CAY‘IB.IZHBIC BEAMYHHBI, THIICPHOPMAABHOC PACIPCACACHHEC, TCOPHA

r\?\ /Q;

Introduction

3KCTp €MAABHBIX 3Ha‘I€HI/II‘/‘I, SHTP OITuA.

The analysis of the set of extreme random variables models is still an extremely topical topic
in many areas of mathematical research in the theory and practice of managing production
processes due to its specificity and great interest in finding an expectation and stability indicators
set studied in practical economics. Calculations of applied mathematics help to determine
tentatively possible boundary parameters of various models, i.e., expectations, despite the fact

that theoretical calculations do not have a direct association with practical data. Nevertheless,
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the consideration of extreme models of extreme random variables is still relevant in many areas
of science and industry.

The study subject was the hypernormal distribution theory.

The study object was a set of extreme random variables models.

The study purpose was a comprehensive analysis of many models of extreme random
variables.

Based on the study purpose, the following tasks were formed:
—  clarify the definition of an extreme value within the framework of the theory;
— analyse the typology of the distribution of maximum values;
—  define hypernormal distribution theories and present their proofs;

— give a conclusion on the practical application of the evidence base of the hypernormal
distribution theories.

To achieve the purpose and solve the tasks formulated on its basis, empirical, analytical and
comparative methods of data analysis and the method of mathematical modelling, which
contributed to the study of the materials presented in this article, were used.

In the study course, materials from the works of such leading world experts in extreme
value theory and programming K. Beck, M. Fowler (Beck & Fowler, 2007), L. Tippett (Tippett,
2013), E. Gumbel (Gumbel, 2012), K. Auer, R. Miller (Awuer & Miller, 2007), and Scott W. Ambler
and researchers as V.L. Khatskevich (Kbatskevich, 2013; Khatskevich, 2020a; Khatskevich, 2020b),
B.V. Gnedenko (Gredenko, 1943), V.A. Akimov, V.A. Bykov (Akimov et al., 2009), E. Yu.
Shchetinin (Akimov et al., 2009; Shehetinin & Nazarenko, 2008), K.M. Nazarenko (Shchetinin &
Nazarenko, 2008), L.P. Kvashko, A.S. Losev (Kvashko & Losev, 2013), V.S. Mikhailov (Mikhailov,
2012), V.A. Popov (Popor, 2013), E.R. Smolyakov (Smolyakov, 2017).

Materials and methods of research

Aunxiliary information and basic definitions

The theory of extreme values is a branch of the science of statistics, which aims to study
extreme deviations from the median of probability distributions, ie., an assessment of
phenomena based on an ordered selection of probability parameters for the most extreme events
or processes. The concept of extreme value theory was introduced by Leonard Tippett (17ppett,
2013) in the first quarter of the 20™ century and became the basis of many studies that have been
going on for about 100 years. At that time, his research was based at the British Cotton Research
Association, where he worked on strengthening the cotton thread. In his research, L. Tippett
postulated that the strength of a thread is determined by the strength of its weakest fibers. He
obtained three asymptotic limits that clearly described the distributions of extrema that
considered independent variables (T7ppert, 2012). 1t was the study that became the starting point
in applying a qualitatively new approach to calculating extremeness in production and economic
indicators. In the future, E.D. Gumbel codified this theory in his work Szatistics of Extremes
(Gumbel, 2012). There he gave the distribution concept, which now bears his name. In the second
half of the 20™ century, the results obtained were significantly expanded and began to consider

insignificant correlations between variables. Strong correlations of the order of dispersion began



to be actively studied already at the beginning of the 21" century with the use of artificial
intelligence and a neural network.

With the potentially high probability of extreme manifestations, there naturally becomes an
increased risk of redundant programming as a form of agile software development
methodologies. The authors of this methodology are such prominent scientists today as Kent
Beck, Ward Cunningham, Martin Fowler (Beck & Fowler, 2007) and others. Kent Beck pioneered
the development of the methodology for the Chrysler Comprehensive Compensation System
project (Beck, 2003). The goal was to apply theoretical methods and develop new and modern
software for those times. As a result of the development, it was possible to raise and develop
technology and programming at a new qualitative level. It should also note that it was in extreme
programming that a departure from the long-term process of creating programmes was
determined, which consisted in the fact that instead of one-time planning, analysis and design of
a system for the calculated course of events, specialists now implement these operations in a
phased complex during development.

The analysis of extreme values plays an important role in the study of many phenomena and
in solving applied problems of the complex systems reliability and efficiency, structural
mechanics, the theory of stability, dynamic strength, etc. Consideration of absolute extrema will
begin with consideration of the maximum:

U = max(Xy, X5, ..., X;).

Values from a set of n random variables (random sequence). If all components of the sample
X4, ...X, are independent and equally distributed random variables, then the distribution
function of the largest F, (X) value is determined as follows:

EX)=PU<x}=PX; <X X, <X,..Xp, <X}=F"(X)
where F(X) is distribution function of the original random variable.

If V is the minimum value of a random variable from a set of # random variables:

V = max(X;, X5, ..., X,,).

And if the components of the sample Xy, ..., X;; are independent and equally distributed
random vatriables, then the distribution function of the smallest Q,,(X) value is determined
similarly:

QX)) =PV<x}=1-PX; 2XX,2X,... X, =2X}=1-[1-F"(X)]"™

Thus, extreme values distributions can be derived from the exact original distribution. In
reality, the analytic properties of the original distribution are rarely known. This leads to the need
to use the principle of maximum distribution and determine on this basis the extreme
distribution of the extreme value (maximum or minimum). From a mathematical viewpoint, the
maximum principle’s application uncertainty leads to the solution of extremal (variational)
problems with organic ones, determined by the form of setting the probabilistic characteristics
and the range of random variable values.

According to the distribution, which has the greatest entropy under certain restrictions, is
called extreme. Next, a brief description of 8 types of extreme distributions of extreme random
variables with a certain degree of universality will be given. The common thing in the formation
of such models is the definition of the Euler-Lagrange equations of variational problems,

considering the specifics of specifying information about the initial random variable and allowing



meaningful interpretation. The most obvious and, most importantly, the most practical
application-oriented is the statistical interpretation of extremal distributions in terms of the
theory of order statistics, the subject of which is the study of the properties and applications of
ordered random variables and functions of them. To this end, we present some auxiliary
information from the theory of order statistics. The source material for statistical analysis,
obtained as a result of a simple random selection from the general population, determined by
the random variable X, is a sample of a finite size n:
X1, X5, 0, Xp.

A sequence of sample values ordered by magnitude X l(n) <X én) < X,(ln) is called a variation
series.

If the initial distribution of the general population is characterised by the mathematical
expectation m and the variance §2, the distribution of the rightmost member of the variation

series is
P{X,S") < x} = F(X).
It should let agree to call the distribution that delivers the entropy maximum an extremal
distribution of type 1. An extremal distribution of type 2 is a limiting n — oo distribution of type

1. If the initial distribution of the general population is characterised by only one mathematical
expectation m, the distribution of the rightmost member of the variation series is
P{x™ < x} = G, ().

It should let agree to call the distribution that delivers the entropy maximum an extremal
distribution of type 3. For the case n — oo the distribution function G, (X) degenerates into a
type 4 distribution function G, (X).

In a similar way, we introduce into consideration the extremal distributions of the minimum
values. If the initial distribution of the general population is characterized by the mathematical

expectation m and the variance §2, the distribution of the rightmost member of the variation

series (the minimum of the random sequence):

Px( < x} = @, (0.
It should let agree to call the distribution that delivers the entropy maximum an extremal
distribution of type 5.
Asn — oo it should say that an extremal distribution of type 5 degenerates into an extremal
distribution of type 6. If it assumes that the original random variable is characterised only by the

mathematical expectation m, the distribution of the leftmost member of the variational series
P{Xr(ln) < x} = R, (X), which provides the maximum entropy, it should agree to call the

extremal distribution of type 6. For the limiting case n — oo it is useful to introduce a type 8
distribution. Thus, extreme distributions of types 1-4 are distributions of maximum values, and
distributions of types 5-8 are distributions of minimum values of random sequences, extreme
distributions of types 1, 2, 5, and 6 are distributions of extremes of random sequences of
independent and identically distributed random variables of the general population, the
distribution function of which is unknown and is characterised only by mathematical expectation

and variance, extreme distributions of 3, 4, 6, and 8 types are distributions of extrema of random



sequences of independent and identically distributed random variables of the general population,
characterised by only one mean, extreme distributions of 3, 4, 7, and 8 types are asymptotic
(limiting) distributions. In a compact form, the main notation and definitions are presented in
the appendix (Table 7).

The principle of maximum values distribution
An extreme distribution of type 1 (hypernormal distribution) is a continuous distribution,

the probability density of which is the solution of the differential equation:

n-1
no?[F, 01 = E,(X) + (X —m)E,(X) = 0] (1)

where m and 02 are the mathematical expectation and variance of the set of initial random

variables. The nonlinear differential equation (1) satisfies the natural boundary conditions

FE,(=0) = 0,F,(©0) =1 (2) and is completely determined by the first two moments (m and

02) of the original random population and the sample size 7.

The hypernormal distribution corresponds to the distribution function F(X) of the original
random variable, determined by solving the following differential equation with the same
boundary conditions

no?E,(X)[FX)]" to?n(n — DF2X)[F(X)]" 2 + (x —m)E,(X) = 0 (3)
F(—) =0,F(0) =1 (4

In the appendix, the figures 1-10 (Figure 1; Figure 2; Figure 3; Figure 4; Figure 5; Figure 6; Figure

75 Figure 8; Figure 9; Figure 10) show graphs of functions and numerical characteristics (expectation

and variance) of the hypernormal distribution for integer parameters n from 1 to 10, obtained

as a result of solving the nonlinear boundary value problem (1), (2). The calculation of the
functions F,(X) is made for standard conditions (for the scale parameter 0 = 1 the shift
parameter m = 0).

For large values of the argument (x >m+ 30) the hypernormal distribution
asymptotically approaches the normal distribution with density

1
f) = Fme O
With an extremal distribution of type 2 (hypernormal distribution), the random variable

Xr(ln) has a limiting (for n > 10) hypernormal distribution if its quantile function has the form

x, =m + av2n/=E;(InP) (6)
where E;(In P) is integral exponential function, whose argument is the natural logarithm of the
probability p = F,(x).
The second table 2 (Table 2) presents the values of the function of the limiting hypernormal

distribution F, (x), whose argument is the value:
X—m
aVn’

The mathematical expectation and variance of a random variable is determined by the

X =

formulas:

E[x{"] = m + ovZn [} J=E;(nP)dp = m + 0.69676v2n,

2
D = 2na? {fol [—Ei(ln P)dp — [fol E;(In P)] dp] } = 2n0%(2 — 0.60672) = 3.0292n0>.



An extremal distribution of type 3 is a continuous distribution whose probability density is

a solution to the differential equation:
mn[G, (x)1G, (x) + G,(x) = 0 (7)

where m is mathematical expectation of the set of initial random variables.

Differential equation (7) satisfies the boundary conditions

Gn,(0) =0,G,(0) =1 (8)
The density is determined by the parameters m and n (sample size).
An extremal distribution of type 3 corresponds to a quantile function that displays

p = o, (x)bx
Xp = mszl(l, mn+1; ’{/}3) 9)

where Fi(A4; B; v; z) are Gaussian hypergeometric function.
Using the representation of the Gaussian hypergeometric function as a series, it is

convenient to represent the calculation formula for function (9) in the form:

x=mp I ——pr (10)

n+r

The mathematical expectation of a random variable X,Sn) is determined by the dependence:

m] _ o0 1
E|Xn ] = mn Zrzo (n+r)(2n+r) )

The value of the sum S, series (Table 3):
1

Sn = X0 G
An extreme distribution of type 4 is a continuous limiting (n — 0) extreme distribution of
type 3. The probability density of this distribution Ge (X) is the solution of the differential
equation:
MNGoo (X)Goo (x) + Goo (x) = 0 (12)
with boundary conditions G, (0) = 0; Go, () = 1.
An extreme distribution of type 4 corresponds to a quantile function that displays:

P=G(x)Bx,
X= —ln’Z}TE(lnP) (13)

The mathematical expectation of a random variable X,Sn) is determined by the dependence:

E[x{"] = S [~ Jy E:nP) dp| =52 (14

= T n+1i
In In—
n

n

Distribution of minimum values
An extremal distribution of type 5 is considered to be a continuous distribution whose

probability density is a solution to the differential equation:
n-1 _
no?[1— Q)] n Qu(x) + (x —m)Q(x) = 0 (15)
where m and 0?2 are mathematical expectation and variance of the set of initial random variables.

Nonlinear differential equation (15) satisfies the natural boundary conditions:

Qn(_oo) =0, Qn(oo) =1(16)



and is completely determined by the first two moments (m and 02) of the initial random
population and the sample size n.

The extremal distribution of type 5 corresponds to the distribution function F(x) of the
original random variable, determined as a result of solving differential equation (15) with
boundary conditions (15).

In the appendix, the figures 11-20 (Figure 11; Figure 12; Figure 13; Figure 14; Figure 15; Figure
16; Figure 17; Figure 18; Figure 19; Figure 20) show graphs of functions and numerical
characteristics (mathematical expectation and variance) of an extremal distribution of type 5 for
integer parameters 1 from 1 to 10, obtained as a result of solving a nonlinear boundary value
problem (15), (16). Calculation of the functions @, (X) is made for standard conditions (for the
scale parameter 0 = 1 the shift parameter m = 0).

For the values of the argument x < m — 30, the extreme distribution of type 5
asymptotically approaches the normal distribution with density:

(x-m)
2no?

1
f) = Fome
As n — o the extremal distribution of type V approaches asymptotically the extremal
distribution of type 6, whose quantile function has the form:
X, =m—oV2n/—E(n(1 - P)) (17)

An extreme type 7 distribution defines a continuous distribution, or density, whose

probabilities are the solution of the differential equation:

n_l .o
mn[l — R,(x)]» R,(x) + R,(x) = 0 (18)
where m is mathematical creation of a set of initial random variables. Differential equation (18)

satisfies the boundary conditions and is completely determined by the first parameters m and n:

R(0) = 0,R, (22) =1 (19
An extreme distribution of type 7 corresponds to a quantile function that displays:

p = Rn(x) B X;

Xy =" [1— (1 -p)]" 0)

The mathematical expectation of a random variable X,Sn) is determined by the dependence:
n)| _ mn
E[Xl ] = 21 @
As n — oo, the type 7 extremal distribution asymptotically approaches the type 8 extremal
distribution.

An extremal distribution of type 8 is considered to be a uniform distribution with a

distribution function:

-1
= RS

And mathematical expectation:

E[x{™] =2 (23

Study results and discussion



This section contains a presentation of the most significant results of the study of the theory
of extremal distributions of extremal random variables.
The differential equation (I) defining the hypernormal distribution function F,(x) is the

Euler-Lagrange equation of the following variational problem:
H =— fjooo fn(x)In(x)dx » max (24)
J= fn(odx =1 (25)
o f()dx =1 26)
I xf)dx =1 27)
I (x=m)? f(x)dx = 0 2 (28)
E,(x) = F™"(x). (29)
The validity of this assertion follows from the proof of theories 1 and 2 below.
Theory 1. Let X is a random variable with density f(x) > 0,x € (—00, ), E,(X) is the
distribution function of the extreme member of the variational series constructed from a sample

of a finite size n from the general population defined by the random variable X. Let, further, the

first two central moments of the random variable X:

m= f_o:osf(x)dx

0% = j-°° (x — m)?f (x)dx.

Then the entropy maximum is reached on a distribution that satisfies the differential
equation (1).

Proof. To do this, it is necessary to find the function f(x) and Fn(x), that ensure the
maximum of functional (24) in the presence of holonomic constraint (29) and under
isoperimetric conditions (25)-(28). According to the well-known theories of the calculus of
variations, the Lagrange multipliers A(x),Vg,Vq,V, is introduced and the Euler-Lagrange

equations for the extended function is composed. So, if:

dL

Fri —Infn(x) — 1,
oL _ _ n-1
o = ~AOnFIIM,

dL

E - A(x)l
the Euler-Lagrange equation for the extended function has the form:

dInfn(x) _

— Alx) =0,

AC)n[F ()]t + vy + 2vu,(x — m) = 0. (30)

The last equation, taking into account (30), can be written as:
n%F”(x) = F(x)[v; + 2v,(x — m)].

After substituting F, (x) = [F,(x)]™, the extremal equation in the considered variational

problem has the form:

n[F, (Ol 7 (O [vy + 20, (x — m)]. 31)

or



sy, COLE, COI™™ + n(n — DIFCOIM2F2(x) = F()[vy + 20, (x —m)]. (32)

It should integrate equation (32) over the domain of the distribution function F (X), applying
integration by parts to the first term. Due to certain properties of the distribution function and
boundary conditions, one can make sure that the integral of the left side of equation (32) will be
equal to 0, and the Lagrange multipliers v4 and v, will be related to the mathematical expectation
by the following final relation:

vy + 2v, — 2u,m = 0.

It follows from here that v; = 0. Multiplying the left and right sides of equation (32) by the
independent variable and integrating the resulting equation in a similar way, one can find the
second final relation connecting the factor with the mathematical expectation k variance.

Indeed, since:

ffooo [FP1(x)E(x) + (n — DF 2 (x)F?(x)]dxF™ 1 (x)F (x),
then integrating the left side of the new differential equation obtained as a result of multiplication
by the independent variable gives the following result:
ffooo [F*1(x)E(x) + (n — DF"2(x)F?(x)] dx = xF (x)F (x),
[ [Fr=1)E@) + (n — DF™2(x)F2(x)] dx = xF (x)F (x) {xx:_"; -
5 PP GOF (x)dx = —=

(the first term after the disclosure of uncertainty gives 0).

Thus, 2v,(mM? — 62)2v,m? = —1. Hence it follows that v, = ZL

o2

Substitution of the Lagrange multipliers v, and v, into differential equation (31) makes it
possible to verify the validity of differential equations (1) and (3). The theory has been proven.

Many problems of evaluating the efficiency of complex systems and probabilistic analysis
of complex processes can be formulated in terms of the theory of order statistics and are related
to the study of extreme values. As an illustration of the foregoing, two examples are given below
that require such an approach.

Example 1. The average time to prepare a product for use is 100 minutes, the standard
deviation is 10 minutes. Five departments simultaneously began preparing for the shipment of a
batch of five products. Find the probability of preparing the entire batch of products by the time
T =120 min.

Solution. Let F (t) is the distribution function of the product preparation time for use (note
that in the problem statement the product preparation time distribution law is not specified). Let
t is the time of product preparation by the first subdivision, and, u t; is by the second one, and
SO on.

Then the sequence ty, t, ..., t5 is a sample of independent identically distributed random
variables. If to arrange this sequence by the value tl(s) < tl(s) <o < tés), the distribution of

the extreme member of the variational series tés) Fs(t) = F3(t) = P{tés) < T} determines the

probability that the random variable tés) will be less than the number T.

According to the condition of the problem, it is required to find

Fy(t)P{t < 120},
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In this case, it is worth noting that such a schematization of a probabilistic experiment
suggests using the hypernormal distribution function with parameters n = 5, to calculate the
probability P{t¢” < 120},

Passing to normalised standard values, it is obtained:
T-m _ 120-100

= T 10 = 2.0-
According to the graph for F5(x) at x = 2.0, it is found:
Fs(2.0) = 0.75.

Example 2. “Model of collection on alarm”. There are eight individual means (units) of the
same type (ships, aircraft, etc.) located at the initial moment at the base (airfield, etc.), which,
according to the alarm signal, should arrive in a given area. The average time of moving one
object to this region is m = 3 hrs, the standard one is 0.5 hr. In how many hours it is necessary
to give an alarm signal so that all eight units arrive in a given area with a probability P at least
80%.

Solution. According to the graph Fg(x) aan P = 0.8, the quantile is found x5 = 3.1.

Since x = (t —m;)o ™}, thent = my + 0yx9g = 3+ 0.5 x 3.1 = 4.55.

It is necessary to dwell on one case of asymptotic behavior of the hypernormal distribution.
Let n — oo (practically for x > 3), a natural consequence of this condition is F,(x) = 1. Then
the differential equation (1) can be represented for standard conditions (m = 0,0 = 1) in the
following form:

nkE, (x) + xE,(x) = 0. (33)

Separating the variables, it is found:

dln fn(x x
;() - = (34)
dx n
__ dFn(x)
TAE f n (x) = T — HAOTHOCTDb THIIEPHOPMAABHOTO PACIIPEACACHUA.

Integration of equation (34) makes it possible to verify the validity of the following result,
presented in the form of the following theory.

Theory 2. For large values of the argument, the hypernormal distribution asymptotically
tends to the normal distribution with density (5).

The result obtained can be somewhat strengthened by considering, instead of the
hypernormal distribution function, the normal distribution function that satisfies the differential

equation (1), with a variance depending on the value of the argument:
1

fn(X) = \/m

e 2D,
Using equation (1), it can be shown that the natute of the change in the variance D(x) is

determined by the following differential equation
(x2 = D)2 — 2xD + —22 1 = 0. (39)
n[¢(x)] n
where D (x) is Laplace function.
It follows from differential equation (35) that for
x = 0,D(x) - o?n.

We set ourselves the goal of determining the function of the limiting hypernormal

11



distribution (extreme distribution of type 2) in the following form:
Fp,(x) = P{v/nX < x}. (36)
For sufficiently large values of n. For standard conditions (m = 0,0 = 1), the

differentiated equation (1) can be represented (mpu n — 0) in the following form:
nF,, (x)F, (x) + xF(x) = 0. (37)

2
It is possible to check that the change of the independent variable y = % allows to

transform equation (37) to the following form:

d?Fe

Separating the variables and integrating, it is found:

dFey
+ E = 0. (38)

Po — _LnF,. 39)
dy 2
From this it follows:
P dFy
y = —1f0 m = —2El(lnP) (40)

where [;P and E; (InP) is integral logarithm and integral function respectively.
Making the reverse transition from Y to X, it can be obtained the following result, presented
in a compact form in the form of the following theory.

Theory 3. The quantile function of the hypernormal distribution asymptotically (n — 0)

Xp = V2n /—E;(InP).

The proof of the theory follows from the above reasoning and confirms the validity of

approaches the function

relation (6).

As an example, illustrating the applicability of an extreme type 2 distribution, consider a test
planning problem.

Example 3. Tests for the failure-free operation of a product should be performed for no
more than 100 days. It is assumed that by the end of the tests at least 90% of the ordered
products should fail. A preliminary assessment of the reliability indicators showed that the
operating time is average, but the failure T, is 50 days, and its standard deviation oy is equal to
5 days. How many items do you need to order and test?

Decision. If the law of the time-to-failure distribution is not known, and the ratio between
the mathematical expectation and the standard expectation is such that there are grounds to
consider the range of permissible values practically unlimited and the estimated number of
ordered products n > 10, then using the function of the limiting hypernormal distribution,
according to Table 2, we define the argument (Tuble 2):

Fo,(X) =09 (¥ = 1.9).

Then:
Tg~To _
i 1.9
where Tg = 100 days (directive test time).
Therefore:

Tg—To\? -50\?
nz(g 0) =(100 50) ~ 25 items.

0r1.9 5%1.9

12



When solving practical problems, one can hardly hope for the completeness of information
about the initial random variable, which makes it possible to estimate higher moments of its
distribution. If the available information about the initial random variable allows us to give only
an estimate of its mathematical expectation, then in the conditions of problem (24)-(29) the
condition (28) is excluded, as will be shown below, the entropy maximum is achieved on a
distribution that satisfies the differential equation (7). By inverting the distribution function
Gy, (x), one can obtain the following result, presented as a theory.

Theory 4. Let X be a random variable with density g(x) > 0,x € (0,0),G(x) is the
distribution function of the maximum value from the set of n random variables from the general
population defined by the random variable X. Let, further, the mathematical expectation of the
random variable X:

m= fooo xg(x)dx.

Then the entropy maximum is reached on a distribution that satisfies the differential
equation (7) with the quantile function (9).

The proof will be as follows. Differential equation (7) is the Euler-Lagrange equation:

nlG, (x)] G (x) — vG,(x) = 0 (41)
G,(0) = 0,G, ()
where v is undefined multiplier.

The next variational problem:
= — fooo G, (x)In G, (x)dx —» max,
fooo G,(x)dx =1,
Jy gGodx =1,
fooo xg(x)dx =m
G,(x) = [fooo g(x)dx]n. (42)
Formal integration of equation (41) for n = 1 gives an exponential distribution law, and for

n # 1 leads to a dependence of the form

x = [ 43
G"+Gn(0)
1
Using the substitution z = G (43), mpeobpasyem K TaDAHIHOMY:

N
o' 2+ ) Vdx =T SR (01 + 5 —Bu)
where ,F;(a, p;y;s) is hypergeometric Gaussian function. Therefore:

Gn(0)x = Z™ ,F,(1,m;n + 1; —fz) (44)

or

G (0)x = poFy (L n + 1;87%/p),
)
(o)Hp G (x) = { <x}

The normalisation condition for the distribution function G, (x) implies the following

where f =

relation:
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ﬂ_

Gn(O)
Indeed, the quantile functions deterrnmed from relation (44) have the form:
X =z (0) JF(L,mn+1;-B27).

For the original random variable:

x, = G.% (1L, mn+1;,-%/p).

. . n A
For the maximum value from a set of n random variables. For x,, = 0,z = ’Gn (x) =

1 and p = G, (x) = 1 and vice versa.
The Gauss hypergeometric function can be represented as the following series:

e _— \'o0 drBrs” i
ZFl(a' ,0: Y, S) - 4r=0 Y r
F(oz+r)
I'(a)

For p = 1(z = 1), series

where A¢y =

Inne A"
ZT 0 (1+n) rl (45)

should diverge.
According to the d’Alembert test, series (45) will diverge if the relation follows:
L+ r+0) (BT (n+1) (7!
1+ 1) 1) (=B (r+1)!

> 1.

Or after transformation:
n+r+2

—B = > 1.
n+2
Therefore, in order for the series to diverge (the normalisation condition is satisfied), it is

necessary that for the sufficiently large r(r — OO) complex:
b=fw="T

To determine the density value at the initial point G,, (0), one integrates relation (44) taking

into account the obtained value for 13:

fol G,(0)xdz = fol z" ,Fi(1,m;n + 1;z)dz.

1
The left side of the equation in accordance with the definition z = [G,,(x)]n is the product

of the value of the distribution density at zero Gr(0) and the mathematical expectation of the
original random variable. It can be shown that the right side of the equation is equal to one.
Indeed, by representing the hypergeometric function as a series and changing the order of

summation and integration, it is defined:

1N 1N

n MGG (Z) ot 5 _ n

f Yr=o (14n), 7! = Xr=o (14+n), 7! qdz = (n+r)(n+r+1)’
n

Series i —————— can be represented as the difference between two seties:
(n+r)(n+r+1)

ey —————=nY2 Ny ——
=0 (nir)(n+r+1) =0 (n+r) (n+r) =0 (ntr+1)’
which after transformation can be represented as follows:
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) _ w 1 0 1 1 w 1
Zr 0 (n+1) Zr 0 (n+7r+1) m=n ., an—n+1 m - nn + Zm=nm
(o]
n2m=n+1 =1L

—m~1.
Substituting the value of the Lagrange multiplier into the differential equation (41) makes it
possible to verify the validity of the differential equation (5) and the quantile function (9). The
theory has been proven.

It is also necessary to clarify the method for determining the mathematical expectation of
the largest value for the case under consideration. In a way analogous to that which was applied
in the derivation of the formula for determining the value of the density at zero G, (0), one can

show that:

(n)] _ o 1w
E|Xn"| =mXrso (n+71)(2n+2)"

To sum up, it suffices to integrate the quantile function (9):

E[X(n)] f x,dp = mf p.Fi(1,m;n + 1;/p)dp.

Representing the hypergeometric function as a series and rearranging the operations of

summation and integration, one can find:
2

E[X,Sn)] =mYl, 2,(3:)(;), [l pttndp = m ¥ eSS

In table 3 shows the values of the sum §,, which make it possible to estimate the
mathematical expectation of the maximum value from samples of n to 10 (for n > 10, one can
use, as will be shown below, the asymptotic properties of the obtained extreme distributions of
extreme values) (Tuable 3).

If we set ourselves the goal of determining the function of the limiting extremal distribution
of type 4, then, by performing constructions similar to the constructions used in the proof of
Theory 3, we can obtain the result presented in the form of the following theory, given by virtue
of obviousness without proof.

Theory 5. The quantile function of type 3 extremal distribution asymptotically (n — o)

approaches the function:

x = —1 E;(In P).
lnT

As an example, illustrating the applicability of extremal distributions of types 3 and 4,
consider the problem of “forecast by one point”.

Example 4. A discrete random process x(1) is observed, its value x(1) is fixed at the first
observation point. What is the expected value of the maximum value at the second point at the
20th point?

Solution. It is natural to take m = x(1) as an estimate of the mathematical expectation of
the average process under one observation. Then, using Table 3, one finds E [max X (2)] =

x(1) * 1.1628 and, using dependence (14), one determines:
E |max X (20)| = x(1) ‘“’i = x(1) * 14.2067.
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Further, it is necessary to consider some features of the construction of extremal
distributions of minimal values. Differential distribution type 5 @, (x) is the Euler-Lagrange
equation of a variational problem similar to problem (24)-(29). The difference in the formulation
of the variational problem lies in the replacement of relation (29) by the dependence:

0u(®) = 1—[1— FI" 46)
defining the distribution function of the smallest value Q,,(x) through the distribution function
of the original random variable F (). This implies that
H, = - fooo 0, (x) InQ,,(x)dx » max

under isoperimetric conditions (25)-(28) and holonomic constraint (46).

The solution of this variational problem allows us to formulate a result similar to that
stated in Theory 1.

Theory 6. Let X be a random variable with density f(x) > 0,x € (—00,0), Q,,(x) is the
distribution function of the smallest (leftmost) member of the variational series constructed from
a sample of finite size n from the general set determined by the random variable X. Let, further,

the two first central moments of the random variable X:
m= ffooo xf (x)dx,
g% = ffooo(x —m)?f(x)dx.

Then the entropy maximum is reached on a distribution that satisfies the differential
equation (15).

Using dependence (46) and differential equation (15), one can verify that the extremal
distribution Q,(x) corresponds to the distribution function F(x) of the original random
variable, determined by differential equation (3).

As an example of using a type 5 distribution, consider the following problem.

Example 5. Under the conditions of Example 1, find the probability of preparing the first
product by the time T = 100 min.

Solution. The solution to this problem is reduced to a sequence of reasoning and actions

applied in solving Example 1. As a result, passing to the normalized standard values x = T_Tm =
1001_0100 = 0 according to the schedule Q5(x) for x = 0, one finds Q5(x) = P(t(sl) < 100) =
0.72.

Analytic properties of the function Q,(x) are similar to those of the function F,(X).
Therefore, for small values of the argument x < m — 30 the extreme distribution of type V
asymptotically approaches the normal distribution about the parameters m and no?, and for

n — oo it degenerates into an extreme distribution of type 6, the quantile function of which is
described by dependence (17).

Generalising the results concerning extremal distributions of types 1 and 5, it seems

appropriate to find the distribution function of the order statistics X,(,:l ) (m=1,2,..,n),which

provides the entropy maximum under isoperimetric conditions (26)-(28). If the initial population

distribution F(x) has density f(x), then the distribution of order statistics Xr(r:l ) veer

IIAOTHOCTDb BHAQA:
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frm () = 22 P{X < x} = s FGO™ 11 = FCOI" ™ (x) (47)
The extremal distribution of the order statistics (the favorite member of the variational

series) is determined by the solution of the Euler-Lagrange equation of the following variational

problem:
= — Jy fun Q) In fu (x) dx > max (48)
1= [ fum(x) dx (49)
m=[" xf(x)dx (50)
o2 = [7 (x —m)? f(x)dx (51)
_ n! F(x) 1 -
Fam() = oo o YT A=)y (52)
Applying the course of reasoning and those transformations and constructions that were
used in the proof of Theory 1, we can obtain a nonlinear differential equation with respect to

the function Fy,,, (x):

[Fnm (x)—F(xo)]vaan

v (53)

Fm (Xo)
Satisfying the boundary conditions Fy,, (—) = 0, F,,(o0) = 1.

_ (m-n)! (n m)!

.. -m) ¥o-
O_Zan+(x m) v=0

Depending on (53) D FI™™{1 —F )m_"% is conversion operator with

properties DV = D(DV™1),D% = F.

The reference value xg for the function Fy,,(x) can be chosen at any point where the
distribution density (47) does not vanish. Note that for m = n differential equation (53)
degenerates into equation (1), and for m = n into equation (15).

Thus, the solution of the variational problem (48)-(53) and the representation of the

nonlinear part of the differential equation using an operator series (S. Lie’s series) allows us to

represent the result obtained in a compact form in the form of the following theory.
Theory 7. Let X be a random variable with density f(x) > 0,x € (—00, ), F,,,,(X) is the

distribution function of the order statistics Xr(n) for a variational series constructed from a
sample of finite size n from the general population determined by the random variable X.

Further, let the first two central moments of the random variable X be known:
m= f_oooo xf(x)dx
g% = f_oooo(x —m)?f(x)dx.

Then the entropy maximum is reached for a distribution that satisfies the differential
equation (53).

In conclusion, it should note some features of extremal distributions of types 7 and 8.
Differential equation (18) is the Euler-Lagrange equation of a variational problem similar to

problem (42). The difference in the formulation of the problems lies in the replacement of the
last holonomic constraint G,(x) = [f;g(x)dx]n by the dependence R,(x)=1-— [1 -
f;c T(x)dx]n, which determines the distribution function of the smallest value R, (x) through

the distribution function of the original random variable R (x) = f ;C r(x)dx.
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Integration of the differential equation (18) allows one to obtain the quantile function (20),
and the passage to the limit n — oo yields dependence (22). A characteristic feature of these
distributions is that they are realised in the class of finite functions (truncated on the right). It
should also be noted that the dependencies for the mathematical expectations of the smallest
values (21) and (23) can find practical application in the express evaluation of samples from an
unknown general population.

The asymptotic behavior of the largest observation in a sample of size n from a distribution
with distribution function F(x) was a problem in the “classical” theory of extreme values. The
central result of this theory (the theorem on three types of limit distributions) was first obtained
by Fisher and L. Tippett in 1928 (Tippett, 2012) and was later proved in full generality in 1943 by
B.V. Gnedenko (Gredenko, 1943). A systematic exposition of the theory of limiting distributions
of extreme quantities and applications to technical problems can be found in Gumbel’s
monograph (Gumbel, 2012). However, here it is necessary to note some specific limitations of
the asymptotic theory of extremal quantities. First of all, all extreme value distributions are
derived either from the exact original distribution or from a distribution of some type. The
original distribution from which the extreme values are selected must belong to one of the three
types of distributions. In reality, the analytic properties of the original distribution are rarely
known, and hence the conditions for using the asymptotic theory of extreme values do not
always correspond to observations and practical applications. Note that in the “classical” theory
of extreme values, when constructing parametric forms of distributions of extreme values, the
key idea (stability postulates) used earlier by Fisher and L. Tippett is used, which consists in the
following. Since the largest observation in a sample of size mn can be considered as the largest
member in a sample of size n, consisting of the maximum members of samples of size m, and
since in the case of the existence of a limit distribution A(x) both of these distributions will tend
to A(x) at m = oo, then A(x) must satisfy the relation A" (a,x + b) = A(x), i.e., the largest
observation in the sample of size n from the distribution with the distribution function A(x)
must, after appropriate normalisation, itself have a limit distribution function A(x). The solution
of this functional equation with respect to A(x) allows us to obtain the following three
parametric forms (three types of distributions of extreme values built on the stability postulate):

Type 1: A1 (x) = exp(—e ™), —oo0 < x0o0.

0,x<0
Type 2: Ap(x) = {exp, (—x™),a>0,x>0

exp(—(—x)%),a>0,x<0
Type3:A3(x)={ p(=( 1)x)>0 .

In this case, it is logical to compare the distributions of extreme values based on different

construction principles. As an example, consider the graphs of distribution functions F,, (x) and
xX—a

A (x) A (x) = exp (—e_T). Naturally, the functions must be compared with the same scale
and position parameters. Note that if a sample X1, X5, ..., X is given from the population with
the distribution function A4 (x) = exp (—exp (— ?))’ as estimates a* and b* of unknown
parameters a and b, one can take solutions of equations (6):

1ok xi—a* _
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1 ok xi—a* _
EZi:l{_ b* }_1’

where C is Euler constant.

. iy . 1
Equating the empirical values of the moments of random variables ;Z{'(=1xi and

%Zlé exp (—%) with the theoretical ones for the distribution Fy(x), after some algebraic

transformations, one can find equations relating the parameters a* and b* of the distribution
function A1 (x) and m, and o0V 2n of the distribution function F,, (x):
m+ovV2nl, = a* +cb* (549

where

I, = f; J=E.(Inp)dp = 0.6967,

oVZn/~Eiin p)
(B =he

With appropriately chosen normalizing and centering parameters a* = 0 and b* = 1, the

limiting hypernormal distribution corresponds from equations (54) to the values of the

parameters 0V 2n and m, determined from the following relations obtained from the systems
of equations (54):

ov2n +1Inl, (6v2n) =0,
m=0—ov2nl.
The figure (Figure 21) shows the graph of the function A(x) = e~

e~

" and the graph of the
function of the limiting hypernormal distribution corresponding to it in terms of parameters
F,(x) = —1.48 4 3,/—E;(InP).

A comparison of the graphs indicates the closeness of the statistical laws of extreme values
obtained under different assumptions. On the other hand, it is not possible to introduce partial
ordering into the set of distribution functions of the form A; (x) and F, (x) (the graphs illustrate
this citcumstance): the function A4 (x) does not dominate the function in the sense of the first
order. Therefore, when choosing a mathematical model of the mechanism for the formation of
extreme random variables, when constructing estimates that guarantee their effectiveness, etc.,
one should be guided by the stability postulate, if it is known that the distribution of the initial
random variable belongs to the exponential type distribution (4), and by the principle of
maximum uncertainty, if only estimates of the mathematical expectation and the variance of the
original random variable (1) are known.

As an example, illustrating the possibility of using the considered laws of distributions of
extreme values, it is presented the distribution function of the levels of water rise at the mouth

of the Neva, constructed according to statistical data fixed since 1703 (7):
x—-221,4
A (x) =exp {—e_ 30,38 },
x =183+ 7.97v2n,/—E;(In P)

where X is level of Neva’s mouth water rise in centimeters.
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Comparison of the probabilities of occurrence of events P{x < 200}", built on these
dependencies, is similar to the nature of dependencies (Figure 27).

The discussion of the applications of the theory of extrema of sequences of random
variables is given fragmentarily and does not yet cover the whole variety of possible problems
related to extreme values, because “... nature speaks to us in the language of mathematics” (G.
Galileo) and it is quite appropriate that this area is worthy of study on its own. yourself.
Therefore, it seems appropriate to proceed to the consideration of the basic problems of
constructing models and some generalisations, confining ourselves mainly to the formulation of

the main results.

Conclusion

Thus, in the study course, the definition of an extreme value within the framework of the
theory was refined, the typology of the distribution of maximum values was analysed, seven
theories of the hypernormal distribution were identified and their proofs were presented, and
practical examples of the application of each theory were given. The practical significance of the
study of extreme random variables models in various areas of industrial human activity was
confirmed.

The materials of the study can be used in the widest range: from application in risk
management of industrial production to predicting the probabilities of natural phenomena,
which makes it possible to prevent significant economic and social losses of society, as well as
make a tangible contribution to programming the probabilities of the development of the society
of the future.
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Appendix

Table 1. Extreme distributions and statistical characteristics of the original random variable

Table 2. Values of the function of the limiting hypernormal distribution Fy, (x), whose argument is the

value X

Determinati Extreme distributions and statistical
clermmation characteristics of the original random variable
Mathematlcal‘expecte;tlon m and Expected value m
variance &
PO <z | B Fu(X) Gu(X) Goo(X)
type 1 type 2 type 3 type 4
(limiting (n — ©0)) (limiting (n — ©0))
Qn(X) Qe (X) Ry, (X) R (X)
type 5 type 6 type 7 type 8
Px™ = x} (limiting (n — o)) (limiting (n — o0))

¥ F, (%) ¥ Fo (3)

0,1 0,0230 1,6 0,830

02 0.0707 17 0,858

03 0,126 1.8 0,873

0.4 0,192 1.9 0,904

05 0.259 2.0 0,921

06 0,326 2.1 0,936

0.7 0,393 22 0,949

08 0,457 23 0,959

0.9 0518 24 0,967

1,0 0,573 25 0,975

1.1 0,628 26 0981

12 0,676 27 0,985

1.3 0,722 28 0,088

1.4 0,762 2.9 0,992

15 0,798 3.0 0,996

Table 3. The value of the sum S, of a seties from 1 to 5

n 1 2 3 4 5
S 1 1,628 2,2643 2,8878 3,4967
n 6 7 8 9 10
Sn 4,0904 4,6694 5,2338 5,7844 6,3214
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Figure 1. Distribution function F; (x) =
P{xil) < x}; (m=0,0%=1)
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Figure 2. Distribution function F,(x) = P{xéz) <
x}; (m = 0.4634; 02 = 1.1077)
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Figure 3. Distribution function F5(x) = Figure 4. Distribution function F,(x) =
3 4
P{x{? < x};m = 0.5355; 0 = 1.3594 P{x{? < x};m = 0.9764; 0% = 1.6622
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Figure 5. Distribution function F5(x) =
P{x® < x};m = 1.1355; 02 = 2.0190
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Figure 6. Distribution function Fg(x) = P{xé@ <
x};m = 1.2458; 0% = 23316
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Figure 7. Distribution function F,(x) = Figure 8. Distribution function Fg(x) =
P{x{ < x};m = 1.4656; 0 = 2.9520 P{x®¥ < x};m = 15504; 6> =3.3127
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Figure 9. Distribution function Fy(x) = Figure 10. Distribution function Fyy(x) =
P{x§” < x};m = 1.5748; 0 = 3.5122 P{x(” < x};m = 1.5792; 0* = 3.6438
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Figure 11. Distribution function Q, (x) = Figure 12. Distribution function Q,(x) =

PxP <xf;m=0; 0% =1 P{x®? < x};m = —0.5321; 02 = 1.0492
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Figure 13. Distribution function Q3(x) =
P{x® < x};m = —0.7330; 02 = 1.1250

X

Figure 14. Distribution function Q,(x) =
P{x(? < x};m = —0.9445; 02 = 1.1546
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Figure 15. Distribution function Qs(x) =
P{x® < x};m = -1.0692; 02 = 2.1477

Figure 16. Distribution function Qg(x) =
P{x(® < x};m = —1.1950; 0 = 2.5258
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Figure 17. Distribution function Q,(x) =
P{x7 < x};m = —1.2977; 02 = 2.9194

Figure 18. Distribution function Qg(x) =
P{x® < x};m = —1.4451; 02 = 3.2427
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Figure 19. Distribution function Qy(x) = Figure 20. Distribution function Qy4(x) =
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Figure 21. Distribution function F,, (x) * A;(x); m =
—1.5573; 62 = 3.6019




